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Testing for Structural Breaks at Unknown Time:
A Steeplechase*

Abstract
This paper analyzes the role of common data problems when identifying structural
breaks in small samples. Most notably, we survey small sample properties of the
most commonly applied endogenous break tests developed by Brown, Durbin, and
Evans (1975) and Zeileis (2004), Nyblom (1989) and Hansen (1992), and Andrews,
Lee, and Ploberger (1996). Power and size properties are derived using Monte Carlo
simulations. Results emphasize that mostly the CUSUM type tests are affected by
the presence of heteroscedasticity, whereas the individual parameter Nyblom test and
AvgLM test are proved to be highly robust. However, each test is significantly affected
by leptokurtosis. Contrarily to other tests, where skewness is far more problematic
than kurtosis, it has no additional effect for any of the endogenous break tests we
analyze. Concerning overall robustness the Nyblom test performs best, while being
almost on par to more recently developed tests in terms of power.

Keywords: structural breaks, heteroscedasticity, skewness, kurtosis, Monte Carlo
study

JEL classification: C12, C15

* This paper was prepared within the research group ’Macroeconomic Forecasting and Macro-
economic Policy’ at the Halle Institute for Economic Research, Department of Macroeconomics.
The authors are indebted to Herbert Buscher, Katja Drechsel, and Rolf Scheufele for valuable
comments.
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Endogene Strukturbruchtests: Ein
Hindernisparcours*

Zusammenfassung
Das vorliegende Papier untersucht die Bedeutung wichtiger Datenanomalien für die
Identifikation von Strukturbrüchen in kleinen Stichproben. Dabei wird insbesondere
auf die endogenen Strukturbruchtests eingegangen, die von Brown, Durbin und Evans
(1975) und Zeileis (2004), Nyblom (1989) und Hansen (1992) sowie Andrews, Lee
und Ploberger (1996) entwickelt wurden. Die Fehler erster und zweiter Art werden
mit Hilfe von Monte Carlo Simulationen für verschiedene Szenarien analysiert. Die
Resultate legen nahe, dass vor allem CUSUM-Tests durch Heteroskedastizität massiv
beeinträchtigt werden, während der so genannte Nyblom-Test und der AvgLM-Test
sich als sehr robust erweisen. Alle untersuchten Tests haben erhebliche Probleme im
Fall starker Leptokurtosis der Fehlerterme. Die Schiefe der Fehlerverteilung hingegen,
die für viele andere statistische Testverfahren problematischer ist, beeinflusst die
aufgeführten Tests kaum. Insgesamt erweist sich der Nyblom-Test als der robusteste,
wobei er gleichzeitig - bezüglich der Power - durchaus mit neueren Testverfahren
mithalten kann.

Schlagwörter: Strukturbruch, Heteroskedastizität, Schiefe, Kurtosis, Monte-Carlo-
Studie

JEL-Klassifikation: C12, C15

* Dieses Papier ist im Rahmen des Forschungsschwerpunktes ’Makroökonomische Prognosen und
Politikanalysen’ am Institut für Wirtschaftsforschung in Halle entstanden. Die Autoren sind
Herbert Buscher, Katja Drechsel und Rolf Scheufele für wertvolle Anregungen zu Dank verpflichtet.
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1. Introduction

The empirical relation between macroeconomic time series is frequently subject to
potential changes caused by the evolution of the political framework. Due to the
large number of political decisions it is commonly unclear, which of these decisions
have sufficiently strong impact on macroeconomic relations to be considered as
structural breaks. Testing for unknown structural breaks, to make sure that these
policy changes do not alter the parameter regime significantly, thus is crucial for
sound economic analysis; see for instance Stock and Watson (1996), McConnell
and Perez-Quiros (2000), Hansen (2001), Zeileis, Shah, and Patnaik (2010), and
references therein. In macroeconometrics these tests usually have to be applied to
small samples due to the low frequency of the data. Even for the US the typical
quarterly time series rarely exceeds 200 observations. Furthermore, heteroscedasticity
and nonnormalities frequently obscure a clear view on the true underlying processes.
While the properties of the standard tests that are employed to test for structural
breaks in the data are well known for large samples with error terms that are Gaussian
i.i.d., evidence on their performance under the outlined conditions that commonly
prevail in macroeconomic analysis is scarce.

This paper provides a detailed inspection of the size and power properties of frequently
used endogenous structural break tests applied to small samples using extensive
Monte Carlo simulations. For the sake of comparability we restrict the analysis to
tests for a single break.1 The comparative analysis includes the traditional CUSUM
test (Brown, Durbin, and Evans 1975) and its refinements proposed by Ploberger and
Krämer (1992) and Zeileis (2004), the tests introduced by Nyblom (1989) and Hansen
(1992), and the F type tests by Andrews (1993), Andrews and Ploberger (1994), and
Andrews, Lee, and Ploberger (1996).2 A Monte Carlo analysis of the power properties
of endogenous structural break tests is provided most notably byAndrews, Lee, and
Ploberger (1996). Diebold and Chen (1996) add evidence on the performance in
small samples.

1 An approach to the analysis of data that contains multiple structural changes in a linear regression
setup is for instance presented in Zeileis, Kleiber, et al. (2003).

2 There is a related estimation technique for the determination of structural break dates, that relies
on the minimization of the sum of squared residuals (see e.g. Bai (1997) and Bai and Perron
(1998)). Since the methodology is very similar to the F type tests, we do not consider these
estimators separately. A survey that covers both structural break tests and structural break
estimation is found in Perron (2006).
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We contribute to this strand of literature by investigating various violations of the
normality and i.i.d. assumptions to the simulation setups. More precisely, the
simulations include heteroscedasticity (more specifically persistent regime switches in
the variance of residuals and autoregressive conditional heteroscedasticity (ARCH))
as well as leptokurtosis and skewness. The simulation results show that - contrarily
to other tests - structural break tests are highly vulnerable to excess kurtosis while
being fairly robust to skewness.

The remainder of the paper is structured as follows. Section 2 outlines the tests
that we will examine. Section 3 describes the simulation setup that we use for
our Monte Carlo simulations and the results for a baseline model. In Section 4 we
add heteroscedasticty, as well as kurtosis and skewness to the residual component.
Section 5 concludes.

2. Methods for Detecting Structural Changes

In the last decades a large number of tests has been developed, to detect structural
breaks at unknown points in time. Following Zeileis (2005), these “endogenous
structural break tests” can be subdivided in three categories:

The first category, that is commonly referred to as “residual based test” or “fluctuation
test”, directly relies on the properties of the residual series under the null hypothesis of
a constant parameter regime without having an explicit alternative hypothesis. These
tests most notably include the original CUSUM test (Brown, Durbin, and Evans
1975) and its refinements (Ploberger and Krämer 1992). For our simulation study, we
used the traditional CUSUM and the CUSUM-OLS test with alternative boundaries
provided by Zeileis (2004). The small sample correction for these boundaries are
proposed by El-Shagi (2010).

The second category of tests builds on the traditional exogenous structural break
tests, like the F test that has been proposed by Chow (1960) for this purpose. To
identify the most likely break point these tests use the supremum of the F statistic.
However, the more recent versions of this test use improved statistics to test whether
the null hypothesis of a constant parameter regime should be rejected. We analyze
both, the original version of the test proposed by Andrews (1993) and the refinements
proposed by Andrews, Lee, and Ploberger (1996).
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The third category of tests is based on ML scores. The first test of this type has been
developed by Nyblom (1989) for nonlinear models. In our paper we evaluate the
alternative version developed by Hansen (1992), that is meant for linear regression
models.

All the tests that we consider in this study are applied to test for structural breaks
in the parameter regime of a standard linear model:

yt = x′tβ + εt, t = [1, 2, ...,T ], (1)

where yt is the dependent variable at time t, xt the corresponding (k × 1) vector of
exogenous variables and εt the residual. The estimated parameters will be marked
with a hat in the following.

CUSUM Test: Brown, Durbin, and Evans (1975) proposed a test known as
CUSUM test, which is based on the cumulative sum of the recursive residuals. The
test statistic Wt is given by:

Wt = 1
σ̂
√
T − k

t∑
i=k+1

ε̂i, (2)

where σ̂ is defined as:

σ̂ =
√∑T

t=k+1 ε̂t
T − k

. (3)

In the traditional CUSUM test ε̂ is given by the series of recursive errors that are
adjusted for the size distortion:

ε̂t = yt − x′tβ̂t−1√
1 + x′t(X ′t−1Xt−1)−1xt

, (4)

where β̂t−1 is the estimate of β using data up to point t − 1 and Xt−1 is the
corresponding matrix of exogenous variables.

Ploberger and Krämer (1992) introduced an alternative version based on OLS
residuals. In here, ε̂ is defined as the common OLS residual i.e.:
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ε̂t = yt − x′tβ̂, (5)

If the (estimated) error terms were Gaussian i.i.d., the cumulated sum of errors as
given in equation 2 could thus be seen as a standard Brownian motion in the case of
the conventional CUSUM test. In the case of Ploberger and Krämer the errors add
up to zero by construction such that the cumulated sum of errors can be seen as a
Brownian bridge; i.e. as “tied down Brownian motion” for which the starting value
and the final value is the same with probability one.3

The probability p thatWt exceeds a predefined boundary bt is constant, if the process
b follows the variance of the process that describes the test statistic under the null
hypothesis. Therefore, Zeileis (2004) recommends to use boundaries that follow the
theoretically derived variances of a Brownian motion for the original CUSUM test
and a Brownian bridge for the OLS based test. This is because the variance of a
Brownian motion is smaller than the variance of a Brownian bridge.4

Thus, a boundary that is passed by the test statistic with a predefined possibility
under the null hypothesis is given by:

bt = λσt, (6)

where σt is the variance of the relevant stochastic process. These variances are given
by:

σCUSUMt = √qt, (7)

in the case of the Brownian motion underlying the original CUSUM test, and by:

σCUSUM−OLSt =
√
qt(1− qt), (8)

in the case of the Brownian bridge underlying the CUSUM-OLS test. In both cases
qt = t/(T − k), i.e. qt is a normalization of the time to the interval [0, 1]. The
CUSUM tests can then be rewritten as:
3 See for instance Karatzas and Shreve (1991) for a more detailed description of these processes.
4 See Hassler (2007).

8 IWH Discussion Paper 19/2010



IWH

sup |Wt|
bt

< λ, (9)

where λ determines the probability that the boundary of interest is crossed at least
once.

Zeileis (2004) provides asymptotic estimates of λ for a commonly used set of p values.

Nyblom Test: The Nyblom test (Nyblom 1989, Hansen 1992) describes a simple
yet powerful test for parameter instability for a fairly general class of time series
models. The null hypothesis of constant parameters is tested against the alternative
that the parameters follow a martingale process.5 It is based on a cumulative sum of
the least squares residuals. From the least squares normal equations we can derive:

T∑
t=1

xitεt = 0 for i = 1, ..., k and
T∑
t=1

(ε2
t − σ̂2) = 0. (10)

Following Hansen (1992), we define a (1× (k + 1))-vector ft for each point in time,
where:

fit =

xitε̂t, i = 1, ..., k

ε̂2
t − σ̂, i = k + 1.

(11)

Defining Sit as the sum of fit over time

Sit =
T∑
t=1

fit, (12)

and defining the vectors:

ft = (f1t, ..., fm+1t), (13)

St = (S1t, ...,Sm+1t), (14)
5 The test statistic described here is very similar to unit root tests proposed by Kwiatkowski,
Phillips, et al. (1992) and Breitung (2002), for instance.
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the test statistic Lj can be written as:

Lj = 1
T

T∑
t=1

S ′tV
−1St, (15)

with V = ftf
′
t . Since Sk+1 holds the cumulated deviations of squared residuals from

average variance of residuals, the Nyblom test does not only respond to changes in
the parameters but to changes in the variance of errors as well.

The corresponding test statistic for the individual parameter Nyblom test is given
by:

Li = 1
TVi

T∑
t=1

Sit, (16)

with Vi = ∑T
t=1 f

2
it for all i = 1, ..., k + 1. The corresponding nonstandard asymptotic

distributions can be found in Nyblom (1989) and Hansen (1990). Since these authors
only report critical values for some standard significance criteria, this study employs
a bootstrapped distribution of the Nyblom test statistic, to allow testing at any
significance level.

SupF Type Tests: SupF type tests are constructed for unknown breakpoints tb like
the tests described above. However, contrarily to the latter, they allow to determine
the most likely position of tb. Therefore, the testing procedure is nonstandard
because tb appears only under the alternative and not under the null hypothesis.
How to deal with such a framework is described by Davies (1977) and Hawkins
(1987). They proposed the supremum statistics of a Wald test, a likelihood ratio test
and a Lagrange multiplier test (SupW, SupLR, and SupLM) to test for structural
breaks. Asymptotically, these tests are equivalent. Numerical approximations to the
asymptotic distribution (examined by Andrews (1993) and Andrews and Ploberger
(1994) for a related class of tests) are given in Hansen (1997). In our paper we follow
Hansen and analyze the properties of the SupLM and two more recent extensions
that use statistics based on the Lagrange multiplier (AvgLM and ExpLM).
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SupLM = sup
π1<tb<π2

LMt(tb), (17)

where tb denotes the date of the structural change which lies between π1 and π2. The
corresponding Andrews, Lee, and Ploberger (1996) test statistics are:

AvgLM = 1
π2 − π1 + 1

π2∑
t=π1

LMt(tb), (18)

ExpLM = ln{ 1
π2 − π1 + 1

π2∑
t=π1

exp(1
2LMt(tb))}. (19)

The corresponding asymptotic distribution and tabulated asymptotic critical values
are given in Andrews, Lee, and Ploberger (1996) and Andrews (2003). This paper
relies on the approximation provided by Hansen (1997).

3. Simulation Setup

3.1. The baseline model

All tests are applied to a simple linear model with a break at time tb. The model
takes the form:

yt = x′tβt + εt, t = [1, 2..,T ], εt ∼ N(0, 0.01), (20)

where

βt =

βt = [0 0.5] ∀t < tb

βt = [0 0.5 + ∆β] ∀t ≥ tb.
(21)
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Table 1: Break intensities Θ and the corresponding values of ∆β
Θ ∆β Θ ∆β

0.005 -0.040 0.055 -0.027
0.010 -0.037 0.060 -0.027
0.015 -0.035 0.065 -0.026
0.020 -0.033 0.070 -0.026
0.025 -0.032 0.075 -0.025
0.030 -0.031 0.080 -0.025
0.035 -0.030 0.085 -0.024
0.040 -0.029 0.090 -0.024
0.045 -0.029 0.095 -0.024
0.050 -0.028 0.100 -0.023

The exogenous time series is given by [1,x1]′, where x1 is normally distributed with
x1 ∼ N(1, 1).6

For our simulation we use a model where the constant term equals zero (both, before
and after the break). The structural break thus affects the simulated time series
correlation of x1 and y. Albeit the true process has no constant term the tests are
performed allowing for a constant. This is especially important for the CUSUM type
tests that produce biased results if applied to a model without constant.

In our baseline simulations the break occurs exactly in the middle of the sample.
We test a broad range of break intensities, where we understand the intensity Θ of
a break ∆β as one minus the significance level of a two-sided t test that compares
the parameter regime before and after the break, if the break was known. Table 1
summarizes selected break intensities and the corresponding values of ∆β.

The Monte Carlo analysis includes 10’000 simulations for each of the 100 break
intensities Θ, that are equally distributed over the interval [0.9 0.999]. That is, we
only include breaks, where the null hypothesis of no break could be rejected with at
least 90% probability, if the break point was known.

6 Note that the exogenous variable has a nonzero mean. This guarantees that angle ψ between the
average exogenous vector and the shift of the parameter coefficient ∆β differs from 90°. This is
important, since the CUSUM family of tests, is not able to detect breaks that do not fulfill this
condition.
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To test whether the empirical size matches the nominal size of the test7, further
100’000 repetitions with no break are simulated.

All tests are made for 100 observations, where we look for breaks between the 16th
and 85th observation.

3.2. Power and size of structural break tests in the baseline
model

Under Gaussian i.i.d. errors the empirical size of most tests equals nominal size. In
small samples the CUSUM type tests with alternative boundaries commonly find
less breaks (under the null hypothesis) than suggested by the nominal p value. This
size distortion is mitigated by using the size adjusted critical values proposed by
El-Shagi (2010).

The empirical size of the Nyblom test equals nominal size for both joint test and
individual parameter test.

The empirical size of the F type tests also generally matches nominal size. The only
exception is the original SupLM test. The null hypothesis is falsely rejected with a
probability that is roughly equal to two thirds of nominal size. This corresponds to
the results of Diebold and Chen (1996), who find a tendency to underreject for this
type of test in an AR(1) setup. Contrarily to the SupLM test, AvgLM and ExpLM
both reject the null with the expected probability.

Figure B.1 in the appendix shows the power properties of the CUSUM, CUSUM-OLS,
Nyblom, SupLM, AvgLM and ExpLM tests for a range of break sizes.

Unsurprisingly, the CUSUM type tests have a very low power, although the OLS type
tests already constitute a substantial power improvement compared to the traditional
recursive residual setup. Although our setup guarantees that the break (i.e. the
vector ∆β) is orthogonal to the average exogenous vector and thus maximizes the
power of CUSUM type tests, breaks are mostly not recognized as such. Even the
strongest breaks that are included in our Monte Carlo experiment are found with a
probability of only 25% with a CUSUM test using a 10 % significance criterion. The
7 That is, whether the probability of a type 1 error matches the probability that is defined by the
required significance level.
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power of the CUSUM-OLS test to find breaks of this size is about 50%. While this
doubles the power of the CUSUM test, the CUSUM-OLS test still is the second worst
of all tests included. The power of traditional CUSUM tests, that do not rely on
the alternative boundaries, is higher if the break occurs in the middle of the sample.
However, this additional power is bought at the cost of a size distortion.

The joint parameter Nyblom test performs substantially worse than the joint param-
eter AvgLM and ExpLM test, that perform best for most scenarios. On average the
power difference is about 10 percentage points. However, this is mostly due to the
Nyblom test including variance stability in the joint parameter version. This adds
an additional level of uncertainty that in turn reduces power. Accordingly, the power
of an individual parameter Nyblom test almost matches the power of the AvgLM
and ExpLM tests.8 However, the individual parameter Nyblom test still performs
worse if very rigid significance criteria are employed. Especially strong breaks are
rarely identified compared to other tests if the significance level is 1% or less.

The F type tests perform quite well. However, the SupF test has substantially
lower power than the AvgLM and ExpLM tests. This lower power, that roughly
corresponds to the power of the joint Nyblom test, is mostly due to the size distortion
caused by the small sample size. Scaled to empirical size instead of nominal size, the
power of the SupF test is more or less on par with the other F type tests.

The ExpLM test outperforms the AvgLM test if very strict significance criteria are
employed. However, the AvgLM test performs consistently better if the critical p
value is larger than one percent. That means, that in small samples the AvgLM
test should be favored given the traditionally employed significance criterion of 5%.
Anyhow, the power difference only is about 2% in favor of the AvgLM test.

Even the ExpLM and AvgLM tests detect a break of intensity Θ with a probability
of less than 40% on the corresponding significance level pcrit = (1−Θ). This lack of
power shows the general difficulties of testing for breaks if the break point is unkown.

8 Since our Monte Carlo setup includes only one regression parameter and the F type tests do not
test for additional parameters of the setup, the joint and individual parameter F type tests are
equivalent. This allows direct comparison of the individual parameter Nyblom test and the joint
parameter F type tests in our setup.
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Figure 1: Size of structural break tests with break in variance

4. Simulation under common data and model
problems

4.1. Heteroscedasticity

The analysis comprises two kinds of heteroscedasticity: first, a model with a sin-
gle break in the variance, and secondly, a model with autoregressive conditional
heteroscedasticity (ARCH).

We compare SupLM, AvgLM, ExpLM, individual parameter Nyblom and the CUSUM
type tests concerning their power and size properties in the presence of heteroscedas-
ticity. Since the joint parameter Nyblom test is designed to capture changes in
the variance of errors, it strongly reacts to heteroscedasticity by construction. This
is intentional rather than a sign of distorted size. Therefore, the joint parameter
Nyblom test is not included in this section.
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4.1.1. Variance regimes

The most basic form of heteroscedasticity is regime change in the variance of the
idiosyncratic error term. Corresponding to our structural break setup, this break
occurs in the middle of the sample in the simulations.

More precisely, the simulation uses the following setup:

yt = x′tβ + εt (22)

εt ∼ N(0,σt)

σt = 0.01 ∀t < tb

σt = 0.19 ∀t ≥ tb.

Surprisingly, the F type tests exhibit strong differences in their robustness to het-
eroscedasticity as can be seen in figure 1. While the rate of false rejects increases
substantially in the case of the SupLM and the ExpLM tests, the empirical size
of the AvgLM test remains closer to the nominal size. The individual parameter
Nyblom test performs very similar to AvgLM. Both versions of the CUSUM test react
heavily to heteroscedasticity. While the rate of type one errors increases to three
times the nominal size in the case of the OLS CUSUM, the size (and correspondingly
the power) of the standard CUSUM test is reduced almost to zero. However, the
reaction of the latter test (standard CUSUM) depends strongly on the specific model
setup. This is discussed in more detail in the technical appendix.

4.1.2. Autoregressive conditional heteroscedasticity

Frequently, a change in the variance of the error term is not due to a permanent
change. Rather, periods of high volatility induce further volatility; therefore times
of high volatility alternate with fairly stable times. This is mostly captured using
models of autoregressive conditional heteroscedasticity.

The model used in this paper is a standard ARCH(1) model, where the conditional
variance of the error term in t only depends on the error term in t− 1.:

yt = x′tβ + εt, (23)

σ2
ε,t = α1 + α2ε

2
t−1.
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Figure 2: Size of structural break tests with ARCH

Except the CUSUM type tests the structural break tests perform reasonably well
in the presence of ARCH effects. While the empirical size increases slightly for the
other tests (to about 10.6% at a 10% significance level) with a corresponding change
in power, this should still be feasible for practical purposes. Figure 2 provides a
visual inspection of empirical size for all tests.

4.2. Non normal error terms

Standard econometric tests mostly rely on the assumption of Gaussian errors. For
practical purposes this assumption is usually reduced to the requirement that the
kurtosis and skewness of the empirical error distribution do not differ significantly
from the respective moments of the normal distribution. However, Monte Carlo
simulations suggest that valid statistical inference is far more sensitive to skewness
than to excess kurtosis (see e.g. Jarque and Bera (1980) and Bai and Ng (2005)).

Therefore, we will first analyze the robustness of endogenous structural break tests
to error terms that exhibit excess kurtosis. In a second subsection we will draw the
simulated error terms from a distribution that is skewed.

Following Mantalos and Shukur (2007), who analyze the properties of the RESET
test under nonnormality, we employ distributions of the Generalized-Tukey-Lambda
(GTL) family. Based on Freimer, Kollia, et al. (1988) we use the specification:
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IWH

Table 2: Standardized Moments of the Error Distributions
N(0,1) Ψ−0.2,−0.2 Ψ−0.7,−0.7 Ψ0.7,−0.1325

µ 0 0 0 0
σ2 1 1 1 1

Skewness 0 0 0 2.04
Kurtosis 3 10.9 735 10.9

Q(U) = λ4 +
[
Uλ1 − 1
λ1

− (1− U)λ2 − 1
λ2

]
/λ3, (24)

where Q is the quantile function and U is a uniform (0, 1) random variable. The
parameter combination λ1 and λ2 determines skewness and kurtosis of the distribution.
The distribution is non skewed if (and only if) λ1 = λ2. The additional parameters
λ3 and λ4 can be used to adjust variance and mean respectively. In our paper, both
of these are set to assure that the distribution has a zero mean and variance of 0.01,
that is to match the first moments of the error distribution with those of the baseline
specification.

For simplicity we refer to the distributions that are defined by the parameter
combination λ1 and λ2 as Ψλ1,λ2 .

4.2.1. Kurtosis

To test the impact of kurtosis on the power and size properties of the structural
break tests we use two alternative setups with excess kurtosis, where the errors are
drawn from a Ψ−0.2,−0.2 and a Ψ−0.7,−0.7 respectively.9 Figure B.2 in the appendix
shows the density functions of these distribution scaled to a variance of 1 compared
to the standard normal distribution that is given as a reference. Table 2 provides
the relevant standardized moments for the respective distributions.

As with skewness we run 100′000 repetitions to test empirical size. We find that
the empirical size differs significantly from nominal size for each test. This holds
true for both setups, slight and extreme leptokurtosis. An overview of empirical size,
compared to nominal size is given in Figure 3 for the extreme setup. Table B.1 in
the appendix summarizes the empirical size for standard p-values for both setups.
9 In general small values of λ1 and λ2 lead to a high kurtosis.
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Figure 3: Size of structural break tests with strong excess kurtosis

Interestingly, while the empirical size of SupLM tests and CUSUM type tests in-
creases compared to the baseline specification, the empirical size of Nyblom tests is
substantially reduced. Especially the size—and correspondingly the power—of the
joint parameter test is strongly affected by kurtosis problems. Even in the setup
with slight excess kurtosis the empirical size is reduced by about 15% compared to
nominal size. In the extreme scenario, the difference between nominal and emprical
size increases to almost 30% with a corresponding loss of power.

Both, AvgLM and ExpLM exhibit an increase in the empirical size. However, this
effect is almost negligible in the setup with less excess kurtosis. Since extreme cases
of leptokurtosis as given by the Ψ−0.7,−0.7 distribution, are scarce, these tests seem
sufficiently robust for most practical applications. While the SupLM tests performs
quite well, it should be taken into account that empirical size in the baseline model
is about two thirds of nominal size. That is, although the empirical size of the
SupLM test still is below nominal size, empirical size increases due to leptokurtosis
of the error distribution. Thus, the general problem of the test is only incidentally
quantitatively compensated quite exactly by this specific violation of the assumptions.
Therefore, this should not be interpreted as a signal of robustness to excess kurtosis.
Also, the size of the SupLM test is affected extremely strong, at the most common
significance level of 5%, making it very hard to interpret the results.

Again, the CUSUM type tests are hit hardest by the violation of the Gaussian i.i.d.
assumption. Since they rely on the analysis of the error terms, this is not very
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surprising. While the CUSUM type tests might be taken as a very conservative
approach, if the Gaussian i.i.d. assumption holds, they are highly unreliable from a
practical perspective, where this can be rarely taken to be guaranteed.

4.2.2. Skewness

The errors in the setup that is employed to test the robustness to a skewed error
distribution is based on a Ψ0.7,−0.1325 distribution, as depicted in Figure B.3 in
the appendix. This distribution is chosen to match the moments of the Ψ−0.2,−0.2

distribution, that has been used in the last section.10 The moments are summarized
in Table 2.

The results are virtually identical to those achieved with slight kurtosis but without
skewness. Thus, while we again find a minor increase in the empirical size of the
LM-tests, a decrease in the size of the joint parameter Nyblom test, and excessive
size distortions in the case of the CUSUM type tests, we are able to attribute this
to kurtosis. Contrarily to other tests, where skewness is far more problematic than
kurtosis, it has no additional effect for any of the endogenous break tests that we
analyze.

5. Conclusion

In this paper we analyze the role of common data problems when identifying structural
breaks in small samples. These data problems involve serveral forms of heteroscedas-
ticity, as well as skewness, and kurtosis being present in the residual series. We
survey the most commonly applied endogenous break tests, such as the CUSUM
and CUSUM-OLS, the joint and individual parameter Nyblom test, and the La-
grange multiplier tests SupLM, AvgLM, and ExpLM. To investigate power and size
properties we used Monte Carlo simulations.

Results emphasize that the structural break tests perform reasonably well in the
presence of ARCH effects, except the CUSUM type tests. The individual Nyblom test
10 There are no suitable GTL distributions that are skewed but match the kurtosis of the normal

distribution. To be able to separate kurtosis effects from skewness effects, we thus match the
kurtosis of the distribution used in the last section.
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and the F type tests are proved to be robust. However, persistent regime switches
in the variance of the error term severely compromise the performance of most
structural break tests. The Nyblom and AvgLM tests are the notable exceptions,
although even these exhibit an increase in the rate of false rejects.

Each test is affected by error terms that are not Gaussian. There are substantial
differences in empirical and nominal size for each test when excess kurtosis is present.
However, opposed to other tests, where skewness is far more problematic than
kurtosis, it has no additional effect for any of the endogenous break tests that we
analyze. Especially the AvgLM and ExpLM tests - that perform best on average -
tend to produce a high rate of type one errors if these tests are employed. Contrarily,
the empirical size of the Nyblom test is below the nominal size under these conditions.
Thus, if looking for a conservative while sufficiently powerful test the Nyblom suggests
itself.

IWH Discussion Paper 19/2010 21



IWH

References

Andrews, D. W. K. (1993): Tests for Parameter Instability and Structural Change
with Unknown Change Point.Econometrica 61.4, pp. 821–856.

Andrews, D. W. K. (2003): Tests For Parameter Instability and Structural Change
With Unknown Change Point: A Corrrigendum.Econometrica 71.1, pp. 395–397.

Andrews, D. W. K., I. Lee, and W. Ploberger (1996): Optimal Changepoint Tests
for Normal Linear Regression. Journal of Econometrics 70.1, pp. 9–38.

Andrews, D. W. K. and W. Ploberger (1994): Optimal Tests When a Nuisance
Parameter Is Present Only Under the Alternative.Econometrica 62.6, pp. 1383–
1414.

Bai, J. (1997): Estimating multiple breaks one at a time.Econometric Theory 13.3,
pp. 315–352.

Bai, J. and S. Ng (2005): Tests for Skewness, Kurtosis, and Normality for Time
Series Data. Journal of Business and Economic Statistics 23.1, pp. 49–60.

Bai, J. and P. Perron (1998): Estimating and Testing Linear Models with Multiple
Structural Changes.Econometrica 66.1, pp. 47–78.

Breitung, J. (2002): Nonparametric Tests for Unit Roots and Cointegration. Journal
of Econometrics 108.2, pp. 343–363.

Brown, R., J. Durbin, and J. Evans (1975): Techniques for testing the constancy of
regression relationships over time. Journal of the Royal Statistical Society B 37,
pp. 149–163.

Chow, G. C. (1960): Tests of Equality Between Sets of Coefficients in Two Linear
Regressions.Econometrica 28.3, pp. 591–605.

Davies, R. B. (1977): Hypothesis testing when a nuisance parameter is present only
under the alternative.Biometrika 64.2, pp. 247–254.

Diebold, F. X. and C. Chen (1996): Testing structural stability with endogenous
breakpoint: A size comparison of analytic and bootstrap procedures. Journal of
Econometrics 70.1, pp. 221–241.

22 IWH Discussion Paper 19/2010



IWH

El-Shagi, M. (2010): “Small Sample Correction for the Alternative CUSUM-Tests.”
mimeo.

Freimer, M., G. Kollia, G. S. Mudholkar, and C. T. Lin (1988): A study of the
generalized tukey lambda family. Communications in Statistics-Theory and
Methods 17.10, pp. 3547–3567.

Hansen, B. E. (1990): “Lagrange Multiplier Tests for Parameter Instability in Non-
Linear Models.” University of Rochester.

Hansen, B. E. (1992): Testing for parameter instability in linear models. Journal of
Policy Modeling 14.4, pp. 517–533.

Hansen, B. E. (1997): Approximate asymptotic p-values for structural change tests.
Journal of Business and Economic Statistics 15.1, pp. 60–67.

Hansen, B. E. (2001): The New Econometrics of Structural Change: Dating Breaks
in U.S. Labor Productivity.The Journal of Economic Perspectives 15.4, pp. 117–
128.

Hassler, U. (2007): Stochastische Integration und Zeitreihenmodellierung. Ed. by
Holger Dette and Wolfgang Härdle. Springer.

Hawkins, D. (1987): A test for a change point in a parametric model based on a
maximal Wald-type statistic.Sankhya: The Indian Journal of Statistics 49.Series
A, pp. 368–376.

Jarque, C. M. and A. K. Bera (1980): Efficient Tests for Normality, Homoscedasticty,
and Serial Independence of Regression Residuals.Economics Letters 6.3, pp. 255–
259.

Karatzas, I. and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus.
Ed. by S. Axler and F.W. Gehring and K.A. Ribet. Springer.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are
we that economic time series have a unit root?: Journal of Econometrics 54.1-3,
pp. 159–178.

Mantalos, P. and G. Shukur (2007): The Robustness of the RESET Test to Non-
Normal Error-Terms.Computational Economics 30.4, pp. 393–408.

IWH Discussion Paper 19/2010 23



IWH

McConnell, M. M. and G. Perez-Quiros (2000): Output Fluctuations in the United
States: What Has Changed Since the Early 1980’s?: The American Economic
Review 90.5, pp. 1464–1476.

Nyblom, J. (1989): Testing for the constancy of parameters over time. Journal of the
American Statistical Association 84.405, pp. 223–230.

Perron, P. (2006): “Dealing with Structural Breaks.” Palgrave Handbook of Econo-
metrics. Ed. by T. Mills and K. Patterson. Vol. 1. Palgrave Macmillan, pp. 278–
352.

Ploberger, W. and W. Krämer (1992): The CUSUM test with OLS residuals.
Econometrica 60.2, pp. 271–285.

Stock, J. H. and M. W. Watson (1996): Evidence on Structural Instability in Macroe-
conomic Time Series Relations. Journal of Business & Economic Statistics 14.1,
pp. 11–30.

Zeileis, A. (2004): Alternative Boundaries for CUSUM Tests.Statistical Papers 45.1,
pp. 123–131.

Zeileis, A. (2005): A Unified Approach to Structural Change Tests Based on ML
Scores, F Statistics, and OLS Residuals.Econometric Reviews 24.4, pp. 445–466.

Zeileis, A., C. Kleiber, W. Krämer, and K. Hornik (2003): Testing and Dating of
Structural Changes in Practice.Computational Statistics & Data Analysis 44.1–2,
pp. 109–123.

Zeileis, A., A. Shah, and I. Patnaik (2010): Testing, monitoring, and dating structural
changes in exchange rate regimes. Computational Statistics & Data Analysis
54.6, pp. 1696–1706.

24 IWH Discussion Paper 19/2010



IWH

A. Technical Appendix

Heteroscedasticity and the CUSUM Test

The CUSUM test is highly sensitive to the order of variance regimes. While a sequence
where a high variance regime follows a low variance regime can hide structural breaks
(i.e. reduce the power of the test), a sequence where a high variance regime precedes
a low variance regime is frequently erroneously mistaken as a structural break in the
parameter regime.

This can easily be seen in figure A.1. The solid line is the 90% quantile of the
absolutes of a Brownian motion with a variance σ = 1. Normalizing the residual
size to one, the CUSUM test (using the alternative boundaries that are provided
by Zeileis (2004)) rejects the null, if the absolute of the cumulative sum of recursive
residuals passes this line.

Figure A.1: 90% Quantiles of Brownian Motions with different variance regimes

The upper, dotted line is the corresponding 90% quantile of the absolutes of a
Brownian motion with a reduction in the variance after the 50th step. The lower,
dashed line gives the same for a Brownian moten with the reverse order of variance
regimes, i.e. high variance follows low variance. Both Brownian motions use an
average variance of σ = 1 of the entire sample of 100 steps.
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Given the identical variance all three plots reach the same point after 100 steps.
However, the pathes towards this joint target differ drastically. If the variance starts
on a low level, there is virtually no chance that the Brownian motion passes the
threshold defined by the solid line in the initial steps. After 50 steps the distance to
this threshold is so very large, that it is highly unlikely that the high variance in
the following steps suffices to drive the Brownian motion far enough to surpass the
critical value.

If however, the high variance regime precedes the low variance regime, it is very likely
that the threshold is surpassed very quickly. After all, this ordering effectively means
that the high variance regime has to face the critical values defined by a medium
variance regime, without starting at a lower level.

All other tests that we analyze in this paper perform similarly under both setups.
This can be seen when comparing figure 1 with figure A.2.

Figure A.2: Size of structural break tests with break in variance
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B. Graphics and Tables

(a) SupLM-Test (b) AvgLM-Test

(c) ExpLM-Test (d) Joint Nyblom-Test

Figure B.1: Power of structural break tests for different break sizes
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(e) Individual Nyblom-Test (f) CUSUM-OLS

(g) CUSUM

Figure B.1(cont.): Power of structural break tests for different break sizes
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Φ-0.7,-0.7

Φ-0.2,-0.2

N(0,1)

Figure B.2: Generalized Tukey Lambda Distributions with Kurtosis

N(0,1)

Φ0.99999, 0.00001

Figure B.3: Generalized Tukey Lambda Distribution with Skewness
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