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Abstract

Based on Contingent Claims Analysis, this paper develops a method to monitor systemic

risk in the European banking system. Aggregated Distance-to-Default series are generated us-

ing option prices information from systemically important banks and the STOXX Europe 600

Banks Index. These indicators provide methodological advantages in monitoring vulnerabili-

ties in the banking system over time: 1) they capture interdependences and joint risk of distress

in systemically important banks; 2) their forward-looking feature endow them with early sig-

naling properties compared to traditional approaches in the literature and other market-based

indicators; 3) they produce simultaneously smooth and informative long-term signals and quick

and clear reaction to market distress and 4) they incorporate additional information through

option prices about tail risk, in line with recent findings in the literature.
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1 Introduction

One of the key lessons from the financial crisis generated in the US subprime mortgage market

is the need to enhance and extend the systemic risk’s analytic toolbox to guide policymaking.

The interest in systemic risk analysis is not that new1 and was driven by last decade’s financial

innovation, liberalization and development. However, the dynamics of this financial crisis has

triggered renewed attention and operational focus at a global scale.

The theoretical and empirical work of defining and assessing systemic risk in banking is

making great progress (de Bandt et al., 2009). As far as empirical research is concerned, different

approaches have emerged in the literature to detect, to measure systemic risk and to attribute

systemic risk to individual institutions in the financial system. These new approaches are either

replacing or supplementing existing methodologies that failed to capture vulnerabilities prior to

this crisis.

This paper introduces a method to detect and monitor systemic risk in the European

banking system based on Contingent Claims Analysis. Without strong additional modeling

assumptions, this paper generates two series of aggregated Distance-to-Default indicators based

on data from balance sheets, equity markets and option markets. The first series is the Average

Distance-to-Default (ADD), a simple average of individual forward-looking Distance-to-Default

series, computed using individual equity options. This indicator is standard in the literature

and informs about the overall risk outlook in the system and the intensity of systemic distress.

The second series is a Portfolio Distance-to-Default (PDD) that aggregates balance sheet infor-

mation into a single entity and uses the option prices information of the STOXX Europe 600

Banks Index. This indicator supplements the information of the Average Distance-to-Default,

outlining the joint risk of distress and embedding interrelations between the banks in the sys-

tem, and also the dynamics between the bank index and its core constituents under tail risk events.

Other models are similar to mine in that they aim to capture and quantify joint risks and

interdependences with the use of market-based information and include risk drivers such as

leverage, size, interbank linkages or maturity mismatch. Recent and popular contributions and

their extensions along these lines are found in Adrian and Brunnermeier (2011), Acharya et al.

1See for instance European Central Bank (2007b) for an overview of the early research approach in this area
conducted by the ECB, the Bank of Japan and the Federal Reserve.
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(2010), Brownlees and Engle (2011), Diebold and Yilmaz (2009), Huang et al. (2009, 2010),

Drehmann and Tarashev (2011b) and Tarashev et al. (2010); Drehmann and Tarashev (2011a).

Galati and Moessner (2011) provides a comprehensive review of this literature and their relative

performance. The approach in this paper is based on Contingent Claims Analysis and it is

therefore closer to the work reviewed in Gray and Malone (2008) and extended in Gray and

Jobst (2010a) and Gray et al. (2010) to include sovereign risk. Compared to the literature cited

above, the CCA approach produces time-varying point estimates of risk indicators that can be

periodically updated, becoming more comprehensive than alternative (conditional) measurement

approaches to systemic risk (Gray and Jobst, 2010b).

Recent contributions in the CCA literature include multivariate density estimations, like the

Systemic CCA measure in Gray and Jobst (2010b), in order to asses the marginal contribution of

financial institutions to systemic risk. In contrast to the approach in this paper, this methodology

introduces formally the dependence structure of the financial institutions in the system to

assess systemic tail risk and to capture systemic risk contributions. The aim in this paper

is limited to set up the framework of a monitoring device that incorporates the information

from different market sources with a strong forward looking component and ability to adapt

to changing market conditions. As a result, the dependence structure among the banks in the

financial system embedded in PDD and ADD series is purely data-based and come from the dif-

ferences between the benchmark bank index and its constituents, specially in the case from options.

The use of individual and index option information incorporates two innovations in the

literature. First, it makes use of information from an additional liquid market, the single equity

and equity indices options markets. Second, the construction of the indicator avoids arbitrary or

strong modeling assumptions or dependence structures among banks in the sample which tend to

weaken its information quality and rely on past information that hinders its ability to anticipate

events of high systemic risk. In other words, the information potential of individual equity and

equity index options allow the Distance-to-Default indicators to become a forward-looking analytic

tool to monitor systemic risk, interdependences between the banks and extreme events in the

financial system over time.

The series generated in the paper are smooth and allow one to tracking the build-up of risks in

the system with a long-term perspective. They are computable on a daily basis and incorporate
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up-to-date market sentiment from option prices. In doing so, they react quickly to specific market

events, when volatility of the components of the system increases and correlations tend to reveal

increased interdependences and stock prices moving in tandem. The option prices information

also enhances significantly the forward-looking properties of the series and makes their signals

timelier than in either literature of market-based indicators or alternative specifications similar to

mine in employing comparisons between a portfolio and an average of its components. Finally,

tail-risk events are detected through option prices as market events affecting the whole of the

banking system have heterogeneous effects on individual banks.

The rest of the paper is structured as follows. Section 2 first reviews the Contingent claims

analysis’ main features and applications -the supporting theory of this approach- then makes ref-

erence to a specific application of the literature that is a standard tool of systemic risk analysis. In

Section 3, the paper provides a detailed description of the method which produces individual and

aggregated series of forward-looking Distance-to-Default (DD) indicators using the information of

the European banking system and its core systemic components. Section 4 reports the main results

of the DD series, highlighting its main attributes as a systemic risk indicator and its advantages

when compared to possible alternative specifications in the related literature. Section 5 concludes.

2 Theoretical Underpinnings

2.1 Contingent Claims Analysis

Contingent Claims Analysis (CCA) is a framework that combines market-based and balance sheet

information to obtain a comprehensive set of company financial risk indicators, e.g: Distance-to-

Default, probabilities of default, risk-neutral credit risk premia, expected losses on senior debt,

etc. Based on the Merton approach to credit risk, CCA has three principles: 1) the economic

value of liabilities2 is derived and equals the economic value of assets (which reflect the present

value of future income); 2) liabilities in the balance sheet have different priorities (i.e. senior and

junior claims) and associated risk); and 3) the company assets distribution follows a stochastic

process (Echeverŕıa et al., 2006; Gray et al., 2010).

In this context, as liabilities are viewed as contingent claims against assets with payoffs

determined by seniority, equity becomes an implicit call option on the market value of assets

2Deposits and senior debt plus equity in the case of banks.
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with strike price defined by the default or distress barrier (determined by the risky debt). As

company assets decline and move closer to a default barrier, the market value of the call option

also falls. The normalized distance between market value of asset and the distress barrier is

called Distance-to-Default (DD) and constitutes the financial risk indicator used in this paper

to assess and monitor systemic risk in Europe’s banking sector3. Distance-to-Default indicates

the number of standard deviations at which the market value of assets is away from the de-

fault barrier and can be scaled into probabilities of default, if the distribution of assets were known.

This method has initially been applied to company default risk analysis and disseminated by

Moody’s KMV –see for instance Arora et al. (2005); Arora and Sellers (2004); Crosbie and Bohn

(2003); Dwyer and Qu (2007)– proving very effective in prediction of ratings’ downgrading and

company default. Gray and Malone (2008) provide a comprehensive review of methodologies and

related literature. The CCA-based indicators are attractive in that they combine different sources

of information, thus making stress detection in the banking system more comprehensive compared

to indicators based on a single source4.

DD series and other CCA-derived risk measures are forward-looking, easy and data-efficient

to compute at high-frequencies. They are also good indicators of market sentiment, relatively

less affected by government interventions and they incorporate most relevant elements of credit

risk. Results in Gropp et al. (2004, 2006); International Monetary Fund (2009) and Tudela and

Young (2003), inter alia, show also that DD improves and even outperforms other indicators of

financial stability including bond or CDS spreads. More recently, International Monetary Fund

(2011) reports that aggregated Distance-to-Default series computed for the US banking system

did a good job in forecasting systemic extreme events and in detecting early turning points near

systemic events in the last decade, even though these series were computed using historical equity

information.

As other market-based financial stability indicators, DD series may also be exposed to some

methodological shortcomings originated in the quality of input data (International Monetary

Fund , 2009; Financial Stability Board, 2009b). In particular, DD series may be sensitive to

market liquidity and market volatility and also exposed to the accuracy of the market assessment,

3This paper is limited to the development of Distance-to-Default series and their application as a systemic risk
monitoring tool. The use of the rest of risk indicators derived from this methodology remains for further research.

4As an example, Krainer and Lopez (2008) show that informational properties of equity and bond markets vary
according to the state of stress and the proximity of corporate default.
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meaning that it may be possible that in periods of high stress in financial markets or market

freezes, the computation is not be possible to implement or and the DD indicators could produce

unclear signals. At worst, even if stress signals from DD series were available, the indicator could

at best be coincident with market events, leaving little margin for policy makers to react (Borio

and Drehmann, 2009)5. Having this considerations in mind, the DD series in this paper are able

to provide clearer and smoother signals of banking stress compared to other indicators which

showed very little movement and weak signals prior to August 2007 and an overshoot thereafter.

2.2 CCA and Systemic Risk

The CCA approach has been recommended by the Financial Stability Board (2009a) as a tool to

enhance systemic risk analysis and to identify systemically important financial institutions and

help establish a regulatory framework that can cope with risk arising from systemic linkages.

Accordingly, several applications of this approach have been implemented to analyze different

dimensions of systemic risk in banking. None of these applications have yet used the information

of option prices of both bank stocks and banks indices before and most indicators rely on

backward-looking information.

For instance, Harada and Ito (2008) and Harada et al. (2010) provided empirical evidence of

DD usefulness to detect bank default risks and to assess the effects of mergers in crisis periods

in Japan comparing individual DD series of distressed banks to aggregate DD series built as

benchmark of the banking system. The aggregate DD series is built as an average of individual DD

series of “sound” banks. This approach is very attractive in terms of policy advise and provides

empirical support to apply aggregated DD for monitoring systemic risk overall and compare risk

performance of individual entities. However, this simple aggregation method has the shortcoming

of implicitly omitting their joint distributions’ properties and relies on past information. In

another application, Duggar and Mitra (2007) construct DD series for individual Irish and other

5As discussed in Gray and Malone (2008), the framework is flexible enough to introduce modeling variants and
relax some of the assumptions, such as an ad-hoc default barrier, constant interest rates and constant volatility. As
a result, several extensions in the literature have been developed in recent years. In particular, Capuano (2008) tack-
les the ad-hoc default barrier issue proposing an endogenously determined default barrier that rapidly incorporates
market sentiment about the developments of the balance sheets, while Chan-Lau and Sy (2006) introduce modifi-
cations in the ad-hoc default barrier to capture pre-default regulatory actions, such as Prompt-Corrective-Actions
frameworks, a common feature in the case of financial institutions. Findings in Echeverŕıa et al. (2009) show that
the choice of risk-free interest rates does not affect the estimates of DD significantly but their selection has to be
adjusted to the specificities of the institutions and markets of analysis (see Blavy and Souto (2009) for a detailed
discussion in the case of the Mexican banking system). Finally, as for constant volatility, this assumption is relaxed
in some models that introduce time varying -generally GARCH(1,1)- volatility series. Research in Echeverŕıa et al.
(2006) and Gray and Walsh (2008) are good examples of this approach.
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international banks and compute rolling correlation series and apply a multinomial logit model

to analyze cross-border contagion and interdependences under different degrees of stress. Finally,

Gray and Walsh (2008) compute DD series for largest institutions in the Chilean banking system

and assess the heterogeneous effects of macroeconomic factors on default risk of banks.

Recently, Gray et al. (2007) and Gray and Jobst (2010a) developed further extensions of the

CCA framework to analyze a wider range of macro-financial issues and systemic risk, such as

sovereign risk, economic output, risk transmission across sectors and quantification of systemic

risk contributions. These authors emphasize the role inter-linkages within the banking sector

and between the banking sectors and other sectors in the economy through of risk-adjusted

balance sheets. In these models, the authors stress the importance of aggregation of univariate

CCA models of institutions or sectors into a multivariate framework that can track the inter-

dependences and linkages within and across sectors. In Gray et al. (2010); Gray and Jobst

(2010b), the authors stress that conventional correlation measures based on realized data become

unreliable in presence of fat tails , especially in times of crisis, and therefore develop a method

where they account for both linear and non-linear dependence via extreme value theory techniques.

The potential to use aggregated DD series to monitor systemic risk is not negligible and, in the

case of the European and other mature banking systems, this potential could overcome some of the

modeling and signal quality weaknesses cited lines above via the properties of option prices of both

individual equities and equity indices. In particular, Gray and Malone (2008) argue that the inclu-

sion of external volatility such as the option-based volatility index VIX improves the performance of

the Merton model and overcomes some of the shortcomings originated in its assumptions. Fleming

(1998) and Yu et al. (2010) find evidence of the index options predictive power, while Becker et al.

(2009) provide evidence of the ability of index options to reflect incremental information about

jumps in volatility that model-based forecasts do not. Bollen and Whaley (2004) show that index

options tend to have information about hedging strategies while stock options are mostly affected

by bullish sentiment. Kelly et al. (2011) analyze the differences between options on a portfolio

and options on its constituents and find public policy-driven sources of divergence in addition to

the correlation component. The methodology described in the following section aims to include all

these properties from option markets into the DD series and improve their performance for sys-

temic risk analysis, while avoiding additional more restrictive assumptions in the Merton model,

especially with respect to the joint distribution features and dynamics of individual risk.
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2.3 Aggregation Methods and Properties of Distance-to-Default Series

In most literature aggregating individual DD into system-wide indicators, aggregation is conducted

mainly through simple averages and sometimes also calibration of individual data into portfolios of

banks, which means treating the system as one large bank. These approaches have been standard

practice in the literature and the ECB’s Financial Stability Review publishes since 2004 series DD

medians and 10th percentiles of global and euro area Large and Complex Banking Groups (LCBG)

or Global Systemically Important Financial Institutions (GSIFIs)6 . The Central Bank of Chile in-

troduced the methodology applied to the Chilean banking system in 2006 (Echeverŕıa et al., 2006)

and the IMF published both Average and Portfolio DD series in country reports for the euro area

and the United States (Annett et al., 2005; Čihák and Koeva Brooks, 2009; Mühleisen et al., 2006).

The analysis of DD averages (sometimes also medians or other quantiles) is most common in

the financial stability publications. Simple averages of individual DD are highly informative of

the dynamics of system-wide risks but can be misleading if analyzed alone since they do not take

into account bank heterogeneity, size differences, risk interdependences and sector-wide tail risks.

While weighted averages or quantile DD partially solve the bank size problem, they are more useful

when distress correlations are low and thus do not tackle well the interdependences among banks

and fail to react to swings in periods of financial stress (Čihák, 2007; Chan-Lau and Gravelle, 2005).

On the other hand, Portfolio Distance-to-Default based on historical return information tracks

the evolution of the lower bound to the joint probabilities of distress (De Nicolò and Tieman,

2007) and enhances therefore information quality of Average Distance-to-Default series, since it

takes into account bank size and tackle risk interdependence among banks7.

When the PDD series are computed using realized pairwise covariances, as described in

Appendix B and in De Nicolò and Tieman (2007), the joint dynamics works primarily as follows:

when the banks’ returns comovement increases in times of market distress, showing higher

interdependences, both series tend to drop and the gap between them tends to narrow. Since

Portfolio DD is in general higher than Average DD and therefore is a lower bound of distress,

the joint movement of DD series contains relevant information about increasing comovement and

hence systemic risk.

6See European Central Bank (2005) for the introduction of the indicator in the publication series.
7This holds true in spite of the fact that aggregation of individual balance sheet data does not fully take into

consideration the crossed exposures, i.e. the portfolio balance sheet data are similar to unconsolidated bank figures.
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If individual GARCH-modeled or option implied volatilities are used as inputs, the series

acquire more reaction to market events. Covariances required for aggregation in this framework

may either be neglected or historical or intra-day pairwise covariances may be used instead8. In

either case, the indicator becomes a coincident one and may fail to detect early signals of market

stress (International Monetary Fund , 2009) even if option prices information of the portfolio

constituents is used.

The information potential of aggregated DD series has not been fully exploited, given the rich

data available in mature markets where option markets are active and deep. Indeed, standard

implied volatilities of options on individual bank stocks are used only to a limited extent, and

implied volatilities from options on sector-based indices are missing in the literature. The inclusion

of individual equity and index implied volatilities can enhance the information content of Average

and Portfolio DD series without imposing strong modeling assumptions about the covariance

structure. Sections 3 and 4 show how this methodology can be applied and how it compares to

existing use of DD to monitor systemic risk.

More important, when using option implied volatilities, the difference between Portfolio and

Average DD conveys important information about systemic risk and include two additional ele-

ments, i.e. tail risk dependence and the effects of public guarantees in system-wide risk perception.

Langnau and Cangemi (2011) show the difference between the downside risks of a portfolio and

that of its constituents is a crucial feature in terms of systemic risk when assets tend to have high

correlation, i.e. in times of crises. There is a higher degree of tail dependence that is not a result of

the combination of fat tails of the constituents of a basket. In addition, Kelly et al. (2011) provide

empirical evidence of the diminishing effect of public guarantees on market-wide risk. Roughly

speaking, public guarantees to the financial sector make artificially cheap the index options and

thus lowers their implied volatility, while individual options may show high implied volatilities even

though there is high correlation of returns. These features would not be traceable using realized

volatilities and therefore make a strong case for the use of index and individual equity option prices

information in the calibration of DD series.

8Most literature use historical covariance series and Huang et al. (2009, 2010) propose an innovation using
high-frequency intra-day covariances to add a forward-looking dimension to asset return correlation.
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3 Empirical Application

This section introduces the bank sample used to compute ADD and PDD series. Then, Sections

3.2 and 3.3 discuss some relevant particularities in the data and methodological approach in this

paper. A detailed explanation of the Merton model, the numerical procedure to compute ADD

and PDD and other relevant technical discussions of the method can be found in Appendices A

and B.

3.1 The Sample

The samples used to compute the Portfolio Distance-to-Default (PDD) and Average Distance-

to-Default (ADD) series are based on the constituents of the STOXX Europe 600 Banks Index

between the Third Quarter of 2002 and the First Quarter of 2011. This sector-based index

includes the largest and most widely traded shares of banks from 17 countries headquartered in

the Eurozone, Iceland, Norway, Switzerland and the United Kingdom. It is probably the best

reference of the European banking sector, reflecting the pan-European dimension of financial

integration. It has an additional key feature for the purposes of this paper in that there are liquid

exchange-traded option prices on the corresponding index9 available since 2002.

The sample used to compute the PDD series includes 91 (nearly all) banks belonging to the

STOXX Europe 600 Banks Index during the timespan, taking into account quarterly index com-

position and updates in the broader STOXX Europe 600 Index due to M&A, nationalizations,

bankruptcy, reclassifications and other relevant corporate actions. The full list of banks in the

sample is presented in Tables 1 to 3.

[Insert Tables 1 to 3 here]

The bank sample used to compute the ADD series is a subset of the former. These banks are

considered the core of the European banking system in terms of systemic risk and for the purposes

of this research. This subsample consists of 34 large systemically important financial institutions,

i.e. the largest 33 banks in the PDD sample plus the ING Group10. Ideally, the PDD and ADD

samples should match perfectly, but the availability of liquid option prices acts as a practical

9Additionally, options on the EURO STOXX Banks Index are also available for the analysis of the banking
system in the Eurozone.

10According to the Industry Classification Benchmark (ICB) methodology, ING Group belongs to the STOXX
600 Insurance Index due to its bancassurance business model. This institution is however considered a bank in
most bank rankings, most empirical research on financial stability and even EU-wide stress tests conducted by the
European Banking Authority (EBA).
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constraint. Accordingly, an initial sample of 52 banks, for which option implied volatilities were

available, was filtered according to the individual option data length and quality. As additional

criterion, the banks in the ADD subsample had to be constituents of the index at the beginning

and during at least 70% of the trading days included in the analysis.

Table 4 lists the resulting 34 banks in this subsample. There are three special cases worth

pointing out. Fortis, HBOS and Alliance & Leicester were large and established banks in the

sample until they were taken over by other large financial institutions from the sample, BNP

Paribas, Lloyds Banking Group and Santander, respectively. As these acquisitions took place late

in the sample, the banks were constituents since the start and had liquid option prices, these three

banks were not dropped from the ADD sample.

[Insert Table 4 here]

The resulting ADD banks are the largest in terms of free-float market capitalization in the

reference index, with an aggregate weight over 80% at the beginning of the sample and around

95% in the First Quarter of 201111.

These banks are regarded as systemically important since this portfolio complies with several of

the size, cross-jurisdictional activity, interconnectedness, substitutability and complexity criteria

listed initially by request of the G-20 leaders in April 2009 (Financial Stability Board, 2009b)

and more recently detailed in a report published by the Basel Committee of Banking Supervision

(2011). With the exceptions of Natixis12, Mediobanca, Standard Chartered and the two large

Swiss banks (UBS and Credit Suisse), all of them were participating banks in the 2011 EBA’s

EU-wide stress tests.

In terms of size, an accurate approximation of systemic importance (Drehmann and Tarashev,

2011a,b), these banks rank highest in the region by total assets13 and according to other size-based

classifications, such as the Forbes 2000 list14. All these banks weigh significantly in their respective

domestic stock markets in terms of market value and trading volumes, and most of them have

11Around 65% and 92% in the same period for application to the EURO STOXX Banks Index. This notable
weight increase was mainly driven by the consolidation process in the European banking sector and, to a lesser
extent, to resulting M&A and other post-crisis restructuring.

12Technically, Natixis did participate, but as the corporate and investment banking arm of Groupe BPCE.
13Based on 2009 end-of-year Bankscope data, fourteen of them are among the Top-3 by assets in their respective

home countries and seven are in the Top-20 in the World Rank.
14This ranking uses an equally weighted combination of rankings by sales, profits, assets and market capitalization

to assign positions. The composition in the top 30 for Europe has remained stable in the last decade, taking into
account major M&A transactions.
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multiple listings at major world exchanges and liquid options traded15. By the end of 2008 and

2009, these banks represented around 70% of the total assets of the EU-27 banking system16.

In addition to the relevant market shares in domestic markets, these banks also operate at a

large cross-border scale throughout Europe and in the rest of the world, which illustrates their

large cross-jurisdictional activity and complexity. On average, around 30% of their total revenues

was generated in a European country other than the home market and over 25% of total revenues

was generated outside Europe in 2008 (Posen and Véron, 2009). Geographical distribution of

assets and liabilities shows similar characteristics.

This portfolio of banks constitutes the core of the ECB’s LCBG and the seed of the Global

Systemically Financial Institutions (G-SIFI) list. Eight of these banks appeared in the Bank of

England’s list of 15 Large Complex Financial Institutions (LCFI) due to their important role in

the global financial system and their engagement in complex businesses and high interconnections

with the rest of the financial system17, making supervisory oversight more difficult. More recently,

Acharya et al. (2011) cites 14 of these institutions as the European financial institutions considered

systemically risky by the Financial Stability Board.

3.2 Calibration of Average Distance-to-Default Series.

The Average Distance-to-Default (ADD) is represented in (1) below and is obtained by taking the

simple average across N = 34 individual bank DD series18.

ADDt =
1

N

∑
DDi,t (1)

where is the individual DDi T periods ahead19. As presented in (2) below, for each bank

i = 1, . . . , 34, DDi,t is a function of a distress barrier Di,t, obtained from the banks’ balance sheet

data; the rate of growth of its assets –approximated by the risk-free interest rate in the respective

15The fact that these banks have options on their stocks adds an additional source of comovement, compared to
banks without traded options, which is relevant in terms of systemic risk analysis (Agyei-Ampomah and Mazouz,
2011).

16Based on data from Bankscope and European Central Bank (2010)
17Deutsche Bank, Credit Suisse, Barclays, HSBC, Société Générale, UBS, RBS and BNP Paribas. The rest of

banks in the list are not European. This list covers several measures of interconnectedness, substitutability and
complexity.

18In the benchmark model, all calculations are conducted with data reported in the currency of the bank’s home
market. Data in converted into euro were also computed with very little differences on aggregate.

19Set at one year, as standard practice in the literature.
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home market, ri,t
20– and two unobservable variables, namely the implied value of assets Ai,t and

the implied assets volatility σA
i,t. The latter two variables are estimated with standard iterative

techniques using the market value of equity Ei,t and equity price return volatility σE
i,t, obtained in

this paper from individual equity options as explained in Appendix A.

DDi,t = f
(
Ai,t(Ei,t, σ

E
i,t), σ

A
i,t(Ei,t, σ

E
i,t), Di,t, T, ri,t

)
(2)

Balance sheet and market data were obtained for the period between 30 September 2002 and

29 April 2011 (2240 trading days)21. Balance sheet data comprise annual and interim data on

total assets, short-term liabilities and equity obtained from Bankscope. The market-based data

include daily observations of risk-free interest rates, market capitalization, euro exchange rates and

at-the-money calls and puts implied volatilities22. The risk-free interest rates are 10-year govern-

ment bond yields in each bank’s country of origin. See Table 5 for a description of data and sources.

Individual DD series have daily frequency. In practical terms, this means the balance sheet

information has to be modified from its original quarterly, half-yearly or, in few cases, yearly

frequencies23. In this paper, the original data were interpolated into daily series using cubic

splines. In a second step, daily default barriers (the face value of short-term liabilities plus half of

that of long-term liabilities) are computed using these new series of daily balance sheet items. The

last step before computing the daily average DD series is to convert put and call implied volatilities

into an average implied volatility and then calibrate the individual DD.

3.3 Calibration of Portfolio Distance-to-Default Series.

The expression for the PDD series is the following:

PDDt = f
(
AP,t(EP,t, σ

E
P,t), σ

A
P,t(EP,t, σ

E
P,t), DP,t, T, rP,t

)
(3)

where PDDt is the Portfolio Distance-to-Default T periods ahead. The definition of the

inputs in the PDD case are the same as in (2). However, as the PDD assumes that individual

20This assumption entails risk neutrality and therefore the associated asset return probability distribution is very
likely to differ from the actual asset return probability distribution. Gray (2009) provides a thorough discussion of
this difference.

21DD series corresponding to Fortis, HBOS and Alliance & Leicester stop on 21 September 2009, 16 January
2009 and 10 October 2008, respectively.

22Missing values for Natixis prior to 29 September 2010 have been replaced for volatility estimates from a
GARCH(1,1) model. Infrequent missing values have been replaced for those from the previous trading days.

23In general, French and British banks issue semi-annual financial reports, while the rest of banks provide quarterly
information. Yearly data were more frequent in the first years of the sample and under Local GAAP accounting
standards. Since 2005, most of the banks in the sample report under IFRS.
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banks are regarded as a big bank, some relevant methodological changes are worth pointing out.

The calibration of (3) requires the aggregation of balance sheet data into a single series. Hence,

the individual annual and interim data on total assets, short-term liabilities and equity are first

converted into euro using bilateral exchange rates against the euro and then added up across the

actual constituents from the portfolio, P = 91, to compute quarterly portfolio’s distress barrier

DP,t, before daily interpolation. The rate of growth of the portfolio assets rP,t is proxied by the

Eurozone synthetic 10-year government bond yield24.

Finally, the estimation of the unobservable variables, namely the portfolio’s implied value of

assets AP,t and the portfolio’s implied asset volatility σA
P,t, was conducted using the equity market

value of the portfolio EP,t, directly taken as the euro-denominated market value of the reference

index, and the portfolio’s equity volatility obtained from the index options σE
P,t.

The daily put and call implied volatilities of options on the STOXX Europe 600 Banks Index

are included under the premise that timely and meaningful implied volatilities call for prices from

an active index option market (Whaley, 2009). These series start on 30 September 2002, which

determines the sample start of this paper. The end date is set on 29 April 2011 in order to include

First Quarter 2011 interim reports’ information for all banks. The time span therefore covers the

slow recovery from the dot-com bubble in the beginning, tranquil times alternated with periods

of minor stress between 2004 and 2006, the financial crisis since August 2007, and the periods of

market recovery and sector-wide recapitalization combined with the emergence of the European

sovereign debt crisis.

Finally, implied volatilities of put and call options on the STOXX Europe 600 Banks Index are

also transformed into daily averages. Using implied volatilities from the reference index and its

main constituents means in practice that this paper does not only add a forward looking component

to the ADD and PDD series, but also that no covariance structure is assumed in the calibration of

the aggregated data, which constitutes an important difference with existing applications of PDD

(Annett et al., 2005; De Nicolò and Tieman, 2007; Echeverŕıa et al., 2006, 2009; Gray and Malone,

2008). Equity volatility is taken directly from options market data, introducing market perceptions

of joint distress risk and its features under extreme events.

24This series was obtained from Datastream. Alternatively and following previous research, a market-cap weighted
average of risk-free interest rates in the corresponding home markets has been considered without affecting the results.

13



4 Results

This section reports the results of the calibration of ADD and PDD series described in the

previous section. It focuses on the properties of the Average Distance-to-Default (ADD) and

Portfolio Distance-to-Default (PDD) series and their difference as a tool to monitor systemic risk

in Europe’s banking system, namely 1) the three series allow to monitor the banking system as a

whole and look at interdependences between banks over time; 2) they are capable of identifying

long term trends of build-up of risk in the sector, while showing a quick and short-lived reaction

to specific market events seen as results of market sentiment and fluctuations; 3) they are smooth,

avoiding low signal-to-noise ratios and fuzzy signals, which allows one to track systemic risk

over time and during crisis and non-crisis episodes; 4) they contain forward-looking signals of

distress compared to other specifications of the indicator that contain past information and to

other alternative market-based indicators based only on stock prices; and 5) the convey richer

information of system-wide tail risk and other market-wide policy actions via the relationship

between the reference index and the constituents.

4.1 Distance-to-Default Series Dynamics and Systemic Risk Outlook

Figure 1 plots together the forward-looking Average Distance-to-Default (ADD) and Portfolio

Distance-to-Default (PDD) series, their difference and also the STOXX Europe 600 Banks Index

as a reference. Table 6 provides the summary statistics of these DD series, denoted as benchmark

model, and those of other DD series computed with alternative specifications to be described

below25. These three series provide a good picture of the market assessment and risk outlook of

the banking system in Europe. As expected, PDD moves along and above ADD over the entire

sample, with some exceptional periods where ADD exceeds PDD26. The PDD series also shows a

higher standard deviation and positive skewness compared to the ADD series. The first feature

illustrates the quick reaction of the PDD series to new information and their effect on returns

comovement across the sample, while the second feature shows the role of ADD and PDD as lower

and higher bounds of joint distress indicators, respectively.

Given a specific trend direction in the series, the difference between PDD and ADD narrows

25Figure 2 shows the series starting in 2005 to account for the generalized adoption of IFRS accounting standards
that might have introduced a break in the series due to revaluation of balance sheet items, see European Central
Bank (2006) and Rapp and Qu (2007) for further discussion.

26In particular, September–October 2002, March 2003, August 2007 and October–November 2010
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in response to specific market events of high volatility during easily identifiable and short periods,

well illustrated by the reference equity index. The difference tends to stay narrow for longer periods

under high volatility regimes in the market and when there is a high degree of joint distress in

the sector. Symmetrically, positive market news are also perceived in the series through transitory

widening of DD series gap during bad times, i.e. low levels of the PDD and ADD series and a

continuous and narrow gap. An example of this latter case can be found in late 2008, when a wide

range of policy measures were implemented at an unprecedented scale to ensure solvency in the

sector under a high degree of uncertainty in the markets.

[Insert Table 6 here]

The ADD and PDD series start at very low levels and with a very narrow gap in the aftermath

of the WorldCom / Enron accounting scandals and the effects of the exposure of many European

banks to the Argentinean crisis, under a high volatility regime. The series show an upward

trend and an increasing PDD-ADD gap afterwards until the end of 2005, reaching a maximum

PDD-ADD gap on 8 August, as financial markets become less volatile and the sector becomes

more profitable yet increasingly levered.

During this time span however, there are some specific and short-lived events where the PDD-

ADD gap narrows significantly. A first example is the period between April and May 2004, where

markets experienced corrections as they anticipated earlier and more pronounced monetary policy

tightening in the US. In April-May 2005, there is another episode of turbulence in both equity and

option markets due to uncertainties about the monetary policy stance in the Eurozone and the US

and especially due to the downgrade of the credit ratings of GM and Ford, which drove a sharp

widening in yield spreads in debt markets also in October 2005, after Delphi’s (a GM’s subsidiary)

bankruptcy. In mid-2006, the series also reflect a market-wide correction in global equity markets,

while in February 2007, the gap narrows for a relatively longer period as the subprime crisis was

starting to unfold. All these events took place in a low market volatility regime and during a period

where bank profitability was continuously increasing. Another interesting feature of the reported

DD series is the fact that they reach their peak in 2005, long before our equity markets’ benchmark

reached theirs. They start a downward trend around this date, which only bounces back after the

first quarter of 2009. This downward trend was mainly caused by the increasing leverage.

[Insert Figures 1 and 2 here]

Since August 2007, the subprime crisis drove the DD series and especially the gap to
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very low levels, setting a new regime of high volatility, decreasing stock returns and high

return comovement across banks, with exceptional periods of wider gaps due to temporary

good news. In this new phase, expected stock return volatility, approximated by the options

implied volatilities, becomes dominant in the calibration of DD, as the elasticities of DD to

changes in the default-barrier and implied asset value is decreasing with changes in the im-

plied asset volatility (Echeverŕıa et al., 2009). The DD series continued to plummet until the

Lehman Brothers collapse and the first round of stress-tests in the US. The round of capital

injections at global scale produced an upturn in the DD series while the gap remained close to zero.

At the end of the sample, the ADD and PDD series show an upward trend, reflecting

deleveraging and, arguably, better capitalization in banks’ balance sheets, but the gap between

them stays at very low levels, showing that transmission of volatility shocks remains high.

This feature illustrates on one hand the series of capital injections across all Europe coupled

with a high volatility regime in financial markets that makes contagion very likely and fast.

These developments are consistent with related findings in the literature Brownlees and Engle

(2011); Diebold and Yilmaz (2009); Yilmaz (2011) about returns spillovers and volatility spillovers.

As noted in previous sections, most market-based indicators of financial stability were targets

of criticism because of their poor performance during the crisis and their failure to detect early

signals of distress in major banking institutions. Indeed, the ECB’s Financial Stability Review

reports the decline of their DD series only in the second quarter 2007 and equity markets remained

somewhat stable even after the liquidity squeeze took place (European Central Bank, 2007a). Even

if the forward-looking DD series presented in this section had no predictive power at the time,

the figures described above make a strong argument for the combined use of forward-looking DD

series based on option prices information to monitor the general build-up of risk in systemically

important banks in Europe and to detect regimes of high volatility and contagion in the market.

Figures 3 and 4 plot together the series computed for banks headquartered in the Eurozone

and Table 6 provides a comparison of their summary statistics vis-à-vis the benchmark model. As

expected, the three series look very similar to those computed for all Europe and with respect to

the reference equity index (EURO STOXX Banks Index). Compared to the series covering the

entire bank sample, the DD series in the Eurozone are slightly more volatile and skewed. The

main difference is at the end of the sample, where the sovereign debt crisis affected harder the

16



Eurozone banks and drove the gap into negative values for longer periods of time between October

and November 2010. This event means that, given high volatility in the market and high expected

comovement of stock returns, the perception of risk in the financial system as a whole is more

pessimistic than the aggregation of case-by-case assessments and is mainly driven by the difference

between the option implied and equity volatility information on the reference index and on its

constituents.

[Insert Figures 3 and 4 here]

4.2 Smoothness Properties

Figures 5 and 6 show the DD series using put implied volatilities and volatilities from a

GARCH(1,1) model in the calibration of both ADD and PDD series, respectively. Their summary

statistics are reported in Table 6. The model assumptions for these specifications are the same

as in the benchmark model with the only difference in the data source of equity volatility used

for calibration. The results are robust to this variation as regards the ability of the indicator to

detect build-up of stress but they serve to illustrate the smoothness of the original series with

respect to other possible but slightly different model specifications. However, as put options are

more reactive to market specific events and contain important information regarding the demands

for portfolio insurance and market volatility (Whaley, 2009), DD series obtained using average

implied volatilities are smoother, which is a valued property of market-based indicators in the

analysis of systemic risk, and provide lower standard deviations. The results of this paper focus

therefore on them only, although it is desirable that the analysis of short term market distress

takes into account the information potential of put-derived DD series27.

DD series based on GARCH(1,1) model volatilities are plotted in Figure 6. They have larger

standard deviations than the benchmark DD series and look clearly and significantly more volatile

and with more swings along the sample and thus convey a low and undesired signal-to-noise ratio28.

GARCH-modeled volatilities have the advantage of quick adjustment to changes in the underlying

27Put options are extensively used for insurance purposes, i.e. hedgers buy puts if they have concerns about a
potential drop in the markets (Whaley, 2009). Kelly et al. (2011) show the usefulness of put options pricing to
evaluate government bailout guarantees.

28GARCH(1,1) volatilities were estimated using prices of individual banks’ shares and STOXX Europe 600 Banks
Index since 31/12/1998, adding an observation as daily closing prices (denominated in local currency) become
available in order to generate more realistic data series. The DD series followed the same estimation methodology
described in Section 3. In terms of the Portfolio DD, this means that GARCH volatilities are estimated for the index
and covariances are neglected. Although not reported, Granger causality tests were conducted for average, portfolio
and differences series, showing rejection of the null hypothesis that main DD do not cause GARCH-generated DD
for 5, 10 and 20 day lags, especially for the Average DD.
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data, but they also tend to overshoot. This feature means more noise in the DD indicator, which

leads in practice to a difficult interpretation of its signals and more frequent false positives in the

series of DD differences. As a result, reliability of this approach is reduced in terms of monitoring

systemic risk compared to both the benchmark series and even DD series constructed with historical

volatilities. In addition, the trends in the GARCH-derived DD series are not as clear as those

depicted in Figures 1 and 2 and there is more dominance of the short-lived market events.

[Insert Figures 5 and 6 here]

4.3 Forward-looking Properties

Figures 7, 8 and 9 compare the forward-looking DD series and their gap to those computed with

historical volatilities and published by the European Central Bank (2009, 2011). In particular,

the three series in Figures 7, 8 and 9 are the weighted average of Distance-to-Default series of

Global Large and Complex Banking Groups (DDLCBG), the median of Distance-to-Default series

of a sample of large EU banks (DDEUmedian) and the weighted average of Distance-to-Default

series for Large and Complex Banking Groups in the euro area (DDEURO), respectively. A simple

graphical inspection of these figures suggests that turning points of forward-looking DD series

precede those of the DD series based on historical volatilities along the whole time span.

[Insert Figures 7, 8 and 9 here]

In order to test econometrically this forward-looking feature of Average and Portfolio DD series

derived from option implied volatilities and their difference, I run pairwise Granger causality tests

vis-à-vis these backward-looking monthly DD series29. Results are reported in Table 7.

[Insert Table 7 here]

Results of Granger tests provide econometric support to the forward-looking feature of our

series. Table 7 shows that forward-looking DD indicators and also their difference Granger cause

ECB’s DD series up to two years, as the graphs suggested. More robust results are obtained for

longer lags in the test using ADD because of the similar method used to obtain these series and

because of the effect of transitory volatility shocks in the PDD indicator is partially cancelled

out in averages and median DD series. The results are also more robust in the case of the series

computed for the Eurozone banks, since the sample is more likely to concide30. These results

29ADD and PDD series were previously transformed to match monthly frequency of ECB data and unit root and
cointegration tests were conducted prior to the Granger causality tests.

30Unfortunately, the ECB publications do not disclose their portfolio composition, which may affect the tests
results marginally.
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strongly suggest that there is still a backward-looking component embedded that is not present in

the DD series that incorporate option price information. The DD series constructed in this paper

have therefore an important advantage as a tool of early detection of systemic risk.

The forward-looking DD series were compared also to other two market-based indicators of

systemic financial stress which do not share the same modelling assumptions. These indicators are

the IMF’s Systemic Financial Stress indicator (SFS) and the Diebold-Yilmaz Connectedness Index

(DY CI), plotted in Figures 10 and 11, respectively. They are based on stock prices information

and thus do not include either balance-sheet data or market sentiment embedded in option prices.

The Systemic Financial Stress indicator was replicated for all banks in the ADD sample following

the methodology in International Monetary Fund (2011). This indicator is based on stock returns

and is bound by construction between 0 and 1. It measures the fraction of financial institutions

in the European banking system that experience large negative abnormal returns relative to the

market benchmark on a given day as well as negative abnormal returns for the week following that

day31. The performance of this indicator is tested (International Monetary Fund , 2011) vis-à-vis

other ten indicators in the literature32, including a backward-looking version of the Distance-to-

Default, in terms of its relative ability to forecast systemic stress, extreme events and early turning

points. This indicator captures very well the intensity and scope of financial distress but embeds

to a lesser extent interconnectedness among the banks in the sample besides the simultaneity of

large negative returns, as it is an aggregation of individual signals of distress.

[Insert Figures 10 and 11 here]

The Diebold-Yilmaz Connectedness Index (DY CI) introduced in Diebold and Yilmaz (2009)

and applied for a set of 14 European banks33 in Yilmaz (2011) is based on the decomposition

of forecast error variances from a vector autoregression model. It is also bound by construction

between 0 and 100 and it measures the fraction of forecast error variances of banks in the

sample that is explained by shocks to other bank stocks. Compared to the SFS indicator, the

DY CI provides a better picture of time varying cross-section effects of stock return volatility, i.e.

31In the original application, the condition includes two weeks of negative abnormal instead of one. However, in
the European case, the speed of transmission of stress is somehow lower than in the US due to the country-specific
circumstances at play. The reference index to compute market stock returns is the STOXX Europe 600 Index. See
International Monetary Fund (2011) for a more detailed explanation of the indicator’s construction, properties and
its application to the US banking system using data from 17 financial institutions.

32Namely time-varying and rolling CoVaR series (Adrian and Brunnermeier, 2011), Joint Probability of Distress
(Segoviano and Goodhart, 2009) , LIBOR-OIS spread, Diebold-Yilmaz Connectedness Index (Diebold and Yilmaz,
2009), Credit Suisse Fear Barometer, VIX Index, Systemic Liquidity Risk Indicator (Severo, 2011), the yield-curve
and backward-looking DD series.

33Dexia, KBC, Credit Suisse, UBS, Commerzbank, Deutsche Bank, Crédit Agricole, BNP Paribas, Société
Générale, Intesa Sanpaolo, Unicredit, ING, BBVA and Santander
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comovement and contagion, but it does not provide signals of increasing risk from higher leverage

in banks’ balance sheets. Figure 11 clearly shows that spikes of this indicator (plotted on inverted

scale to facilitate comparison) correspond to those short-lived episodes where the gap between

PDD and ADD narrows significantly.

The lower two panels in Table 7 show the results of the Granger Causality tests applied to these

two additional systemic risk measures. They show that the forward-looking series developed in this

paper provide a better performance in terms of early systemic stress detection. In particular, the

PDD series Granger causes the SFS in the short run while the ADD series precede its signals up

to 24 months. This result is largely driven by the similar type of systemic risk elements captured

by the ADD series and the SFS indicator. The results of the tests applied to the DY CI provide

an additional insight. While the ADD series do not seem to Granger cause this indicator, the

PDD and the PDD-ADD difference Granger cause the DY CI up to three months, which illustrate

the information content of PDD series about comovement, contagion and joint distress, which is

relatively less perceptible in ADD series compared to its ability to assess the intensity of financial

distress. The forward-looking DD series do not Granger cause the DY CI for longer lags probably

due to the modelling ability of this indicator to incorporate quickly new information about joint

stress, including tail events.

4.4 The PDD–ADD Difference

Thus far, the section has stressed the ability of the forward-looking Distance-to-Default series

and their difference to assess the risk outlook in the banking system in Europe over time and to

provide early systemic stress detection vis-à-vis alternative specifications of Distance-to-Default

and other market-based indicators. This subsection gives a closer look at the difference between

the PDD and ADD series and its properties besides the prevalence of expected comovement

changes across bank returns implied by the differences between the index implied volatility and

the implied volatilities of its constituents.

As described in Section 2.3, the difference between PDD and ADD series embeds to a large

extent the comovement and correlation structure of banks’ returns. In the case of series where

calibration relies on realized pairwise covariances, it is a full reflection. In the case of the series

computed with individual and index option implied volatilities, the role of expected correlation

on the DD gap remains important but it also includes additional elements of sector-wide tail risks
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in extreme times. In addition, the PDD-ADD gap depends on the volatility regime in the equity

markets. During crisis times, there is stronger effect of the comovement component while under

low volatility regimes, the other DD inputs, i.e. relative difference in terms of leverage and return

growth, play a more relevant role.

In order to illustrate these points, Figure 12 shows the empirical exceedance correlations34

between standardized PDD and ADD series following the methodology described in Ang and Chen

(2002) and Longin and Solnik (2001) superimposed with exceedance correlations for the bivariate

normal distribution with the same correlation coefficient (ρ = 0.9445). This figure documents the

presence of asymmetric and nonlinear dependence between the series, which is in turn determined

by the volatility regime and the relative relevance of the data inputs in the calibration. First,

the left of the distribution shows as expected significantly larger correlation than the right of the

distribution. However, correlations in the left are not strictly decreasing, showing that comovement

of the PDD and ADD series are not replicating that frequent empirical finding in the literature

about equity returns.

[Insert Figure 12 here]

Figure 13 shows the difference between the implied volatility of the STOXX Europe 600 Banks

Index and the (market-cap) weighted average of implied volatilities across the ADD sample. This

spread has been time-varying but negative and bound between 20 and 30 percentage points for

most of the time until the Lehman Brothers bankruptcy. Then, this spread widened remarkably

until it receded since May 2009. The implied volatilities went back to similar levels from the early

days of the financial crisis, i.e. August 2007 – September 2008, and the spread below 20 percentage

points. This figure shows the overall regular behavior of this gap, compared to the larger movements

described in the forward-looking DD series difference. Figure 14 plots this difference versus the

PDD-ADD difference to provide evidence of the nonlinear relationship between these variables.

Even though the relationship becomes stronger when the DD gap is smaller, the relevance of the

volatility component when DD series are close this figure suggests that the implied volatilities

differences play a different role under different volatility levels.

[Insert Figures 13 and 14 here]

34Exceedance correlations show the correlations of the two standardized DD series as being conditional on
exceeding a p threshold. ρ̃ ≡ Corr[PDD,ADD|PDD ≤ QPDD(p) and ADD ≤ QADD(p)], for p ≤ 0.5 and
ρ̃ ≡ Corr[PDD,ADD|PDD > QPDD(p) and ADD > QADD(p)] for p > 0.5, where QPDD(p) and QADD(p) and
are the pth quantiles of the standardized PDD and ADD series, respectively.
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In order to add further insights, Figure 15 shows a scatter plot where the PDD and ADD

difference is displayed against the Average Implied Correlation. The Average Implied Correlation

(AIC) is a weighted difference of the STOXX Europe 600 Banks Index implied volatility and the

weighted average of the implied volatilities of the banks in sample. This is a measure of the

markets expectation of the future correlation of the index components and was generated following

the CBOE S&P 500 Implied Correlation Index methodology35 and also analyzed in Skintzi and

Refenes (2005).

[Insert Figure 15 here]

Figure 15 shows a negative and nonlinear relationship between the DD differences and the AIC

series, with a large Spearman correlation coefficient rho of -0.88 and a Kendall’s tau of -0.6936,

which illustrates the correlation component of the gap between Portfolio DD and Average DD.

Yet, as in the previous case, the relationship is stronger when the gap between PDD and ADD

is low but it allows large AIC fluctuations under very narrow DD gap. The relationship flattens

out as these DD series diverge more, where idiosyncratic bank risk components dominate and the

other risk DD inputs play a stronger role in the DD calibration.

The red data points in the graph show the period after August 2007. As in the case of sim-

ple differences between the implied volatilities, the relationship between DD differences and AIC

becomes very steep but it includes also narrow gaps of the DD series and, more strikingly low co-

movement regimes. This evidence is in line with recent findings in the literature and illustrate that

options prices endow the DD series with richer information than alternative specifications that are

highly relevant for systemic risk and are not only related to correlation or comovement, but also

with tail events. As final robustness check, I also computed the AIC series based on implied assets

volatilities obtained from the DD calibration. These series are plotted in Figure 16 and show that

the asset-based average implied correlation has a much weaker relationship with the PDD-ADD

difference, with a Spearman correlation coefficient rho of -0.10 and a Kendall’s tau of -0.09, which

illustrates that the PDD-ADD spread is not only a result of returns expected correlations nor

implied asset correlations.

[Insert Figure 16 here]

35See http://www.cboe.com/micro/impliedcorrelation/ImpliedCorrelationIndicator.pdf for details.
36Similar values for the subsamples before and after August 2007.

22

http://www.cboe.com/micro/impliedcorrelation/ImpliedCorrelationIndicator.pdf


5 Concluding Remarks

This paper proposes a method to monitor systemic risk in the European banking system. The

approach relies on Contingent Claims Analysis to generate aggregated Distance-to-Default series

using option prices information from systemically important banks and the STOXX Europe 600

Banks Index. The analysis extends from 30 September 2002 to 29 April 2011, covering both calm

times and the financial crisis.

The portfolio of banks comprises the largest financial institutions in Europe, characterized by

a high degree of complexity and close linkages to the rest of the financial system. This approach

is applicable to mature economies, where option markets are active and liquid in both individual

equity and equity index option contracts.

The generated series revealed several methodological advantages with respect to traditional

approaches in the literature and other market-based indicators of financial stability. Firstly, the

analysis of systemic risk is notably enhanced if both Portfolio and Average and Distance-to-Default

series and their gap are used to monitor vulnerability in the banking system over time. The

aggregated series encompass the analysis of both overall, joint risk of distress in the system and

even tail risk events.

Secondly, results in the paper show that the information embedded in option prices endow

the series with a forward-looking property, allowing for early signaling of distress, which is not

perceived by many other market based indicators of financial stability or even by backward-looking

specifications of similar indicators. The use of implied volatilities from options on the sector index

also helps circumvent assumptions about equity prices correlations and the use of historical data,

which would turn the indicator into a coincident one. It also helps avoid arbitrary assumptions

in the model to capture interdependence between banks during times of distress and additional

signals of risk in addition to the expected asset and return correlation component.

Finally, the aggregated Distance-to-Default series are smooth and show quick and clear

reaction to short-lived market events without weakening their longer-term informational content.

In other words, they incorporate very quickly market expectations via option prices that do not

distort the overall risk outlook in the financial system.
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Tables and Figures

Table 1: Bank sample based on the STOXX Europe 600 Banks Index

Name ISIN Code Country Constituent
from to

1 RBS* GB0007547838 GB Q3-02 Q1-11
2 Barclays* GB0031348658 GB Q3-02 Q1-11
3 BNP Paribas* FR0000131104 FR Q3-02 Q1-11
→ Fortis* BE0003801181 BE Q3-02 Q1-09
→ BNL IT0001254884 IT Q3-02 Q1-06
4 HSBC* GB0005405286 GB Q3-02 Q1-11
5 Deutsche Bank* DE0005140008 DE Q3-02 Q1-11
→ Deutsche Postbank DE0008001009 DE Q3-04 Q4-10
6 UBS* CH0024899483 CH Q3-02 Q1-11
7 ING*(1) NL0000303600 NL Q3-02 Q1-11
8 Crédit Agricole* FR0000045072 FR Q3-02 Q1-11
→ Crédit Lyonnais FR0000184202 FR Q3-02 Q1-03
→ Emporiki Bank GRS006013007 GR Q3-02 Q2-06
9 Société Générale* FR0000130809 FR Q3-02 Q1-11

10 UniCredit* IT0000064854 IT Q3-02 Q1-11
→ Bank Austria Creditanstalt AT0000995006 AT Q4-03 Q3-05
→ HypoVereinsbank DE0008022005 DE Q3-02 Q1-06
→ Capitalia IT0003121495 IT Q3-02 Q3-07
11 Santander* ES0113900J37 ES Q3-02 Q1-11
→ Abbey National GB0000044551 GB Q3-02 Q3-04
→ Banca Antonveneta IT0003270102 IT Q3-02 Q1-06
→ ABN Amro NL0000301109 NL Q3-02 Q3-07
→ Bradford & Bingley GB0002228152 GB Q2-05 Q3-08
→ Alliance & Leicester* GB0000386143 GB Q3-02 Q3-08
12 Credit Suisse* CH0012138530 CH Q4-02 Q1-11
13 Commerzbank* DE0008032004 DE Q3-02 Q1-11
14 Dexia* BE0003796134 BE Q3-02 Q1-11
15 BBVA* ES0113211835 ES Q3-02 Q1-11
16 Lloyds Banking Group* GB0008706128 GB Q3-02 Q1-11
→ HBOS* GB0030587504 GB Q3-02 Q4-08
17 Danske Bank * DK0010274414 DK Q3-02 Q1-11
18 Nordea* SE0000427361 SE Q3-02 Q1-11
19 Natixis* FR0000120685 FR Q3-02 Q1-11
20 Intesa Sanpaolo* IT0000072618 IT Q3-02 Q1-11
→ San Paolo IMI IT0001269361 IT Q3-02 Q4-06
21 KBC* BE0003565737 BE Q3-02 Q1-11
→ Almanij BE0003703171 BE Q3-02 Q4-04
22 Standard Chartered* GB0004082847 GB Q3-02 Q1-11

Notes: → denotes acquisition by the nearest numbered bank listed above. * Also in the sample of the Average

Distance-to-Default series. (1) Constituent of the STOXX 600 Insurance Index.
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Table 2: Bank sample based on the STOXX Europe 600 Banks Index (cont.)

Name ISIN Code Country Constituent
from to

23 SEB* SE0000148884 SE Q3-02 Q1-11
24 DnB NOR* NO0010031479 NO Q3-02 Q1-11
→ Gjensidige NOR NO0010149354 NO Q3-02 Q3-03
25 Svenska Handelsbanken* SE0000193120 SE Q3-02 Q1-11
26 Erste Group* AT0000652011 AT Q3-02 Q1-11
27 Swedbank* SE0000242455 SE Q3-02 Q1-11
28 Banca Monte dei Paschi di Siena* IT0001334587 IT Q3-02 Q1-11
29 Banco Popular Español* ES0113790531 ES Q3-02 Q1-11
30 Mediobanca* IT0000062957 IT Q4-02 Q1-11
31 Bankinter* ES0113679I37 ES Q3-02 Q1-11
32 Raiffeisen Bank International AT0000606306 AT Q2-05 Q1-11
33 National Bank of Greece GRS003013000 GR Q3-02 Q1-11
34 Alpha Bank GRS015013006 GR Q3-02 Q1-11
35 Bank of Ireland IE0030606259 IE Q3-02 Q1-11
36 Banco de Sabadell ES0113860A34 ES Q3-02 Q1-11
37 UBI Banca IT0003487029 IT Q3-02 Q1-11
→ Banca Lombarda e Piemontese IT0000062197 IT Q3-02 Q1-07
→ BP di Bergamo IT0000064409 IT Q3-02 Q2-03
→ BP Commercio e Industria IT0000064193 IT Q3-02 Q2-03
38 Jyske Bank DK0010307958 DK Q3-02 Q1-11
39 Bank of Piraeus GRS014013007 GR Q3-02 Q1-11
40 EFG Eurobank Ergasias GRS323013003 GR Q3-02 Q1-11
41 Banca Popolare di Milano IT0000064482 IT Q3-02 Q1-11
42 Banco Popolare IT0004231566 IT Q3-02 Q1-11
→ Banca Popolare Italiana IT0000064300 IT Q3-02 Q3-07
→ BP di Verona IT0001065215 IT Q3-02 Q1-02
→ BP di Novara IT0000064508 IT Q1-02 Q1-02
43 Banco Comercial Portugus PTBCP0AM0007 PT Q3-02 Q1-11
44 Banco Espirito Santo PTBES0AM0007 PT Q3-02 Q1-11
45 Allied Irish Banks IE0000197834 IE Q3-02 Q2-10
46 Banco de Valencia ES0113980F34 ES Q2-03 Q1-11
47 Anglo Irish Bank IE00B06H8J93 IE Q3-02 Q4-08
48 Valiant(2) CH0014786500 CH Q1-03 Q4-06
49 Bank of Greece GRS004013009 GR Q3-03 Q1-10
50 Banco BPI PTBPI0AM0004 PT Q1-03 Q1-09
51 Sydbank DK0010311471 DK Q2-05 Q1-11
52 Banca Carige IT0003211601 IT Q2-05 Q1-11
53 Northern Rock GB0001452795 GB Q3-02 Q3-07
54 Pohjola Bank FI0009003222 FI Q3-06 Q1-11

Notes: → denotes acquisition by the nearest numbered bank listed above. * Also in the sample of the Average

Distance-to-Default series. (2) Also constituent between Q1-08 and Q1-11.

31



Table 3: Bank sample based on the STOXX Europe 600 Banks Index (cont.)

Name ISIN Code Country Constituent
from to

55 BP Emilia Romagna(3) IT0000066123 IT Q3-02 Q3-03
56 BP Di Sondrio(3) IT0000784196 IT Q3-02 Q3-03
57 Close Brothers GB0007668071 GB Q4-02 Q2-05
58 Investec GB00B17BBQ50 GB Q4-02 Q2-05
59 Credito Valtellinese IT0000064516 IT Q4-08 Q4-10
60 Landsbanki IS0000000156 IS Q1-07 Q3-08
61 Kaupthing IS0000001469 IS Q1-07 Q3-08
62 Julius Baer CH0102484968 CH Q4-09 Q1-11
→ GAM Holding CH0102659627 CH Q3-02 Q2-05
63 EFG International CH0022268228 CH Q3-08 Q1-09
64 Depfa Bank IE0072559994 DE Q3-03 Q3-07
65 Banco Pastor ES0113770434 ES Q1-06 Q2-08

66 Crédit Agricole d’̂Ile-de-France FR0000045528 FR Q4-02 Q4-04
67 Banque Nationale de Belgique BE0003008019 BE Q1-03 Q4-03

Notes: → denotes acquisition by the nearest numbered bank listed above. (3) Also constituent between Q3-09 and

Q1-11. Marfin Financial Group (GRS314003005, GR), Glitnir Banki (IS0000000131, IS), KBC Ancora (BE0003867844,

BE) and First Active (IE0004321422, IE) were excluded from the sample due to data quality reasons. In all these cases,

their corresponding index weights did not exceed 0.2%.)
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Table 5: Description of Variables

Balance Sheet Variables

Variable Definition

Total Assets As reported in Annual and Interim Reports. Source. Bankscope, code 2025.

Short-term Liabilities Deposits and Short term funding. Source. Bankscope, code 2030.

Total Equity As reported in Annual and Interim Reports. Source. Bankscope, code 2055.

Daily Market-based Variables

Variable Definition

Risk-free Interest Rate Benchmark ten-year bond yield of country where the bank in question is
headquartered. Source. Thomson Datastream, codes: Austria (OEBRYLD),
Belgium (BGBRYLD), Denmark (DKBRYLD), Eurozone, synthetic (EM-
BRYLD), France (FRBRYLD), Germany (BDBRYLD), Italy (ITBRYLD),
Netherlands (NLBRYLD), Norway (NWBRYLD), Spain (ESBRYLD), Swe-
den (SDBRYLD), Switzerland (SWBRYLD), UK (UKMBRYD).

Market Capitalization Total market value measured by close share price multiplied by the ordinary
number of shares in individual issue. Expressed in thousands of domestic
currency (converted into euro at official ECB exchange rates when required).
Source. Thomson Datastream. Codes available in Table 4.

Index Market Capitalization Total market value measured as the sum of individual total market values of the
constituents. Expressed in thousands of euro. Source. Thomson Datastream.
Codes: S3TMB3E for STOXX Europe 600 Banks Index and S3TEB3E for the
EURO STOXX Banks Index.

Exchange Rates End-of-day bilateral exchange rates against the euro. Source. Datastream,
codes: Danish Krone (DKECBSP), Icelandic Krona (ICECBSP), Norwegian
Krone (NWECBSP), Swedish Krona (SDECBSP), Swiss Franc (SWECBSP),
British Pound (UKECBSP), US Dollars (USECBSP).

Equity Implied Volatilities Daily at-the-money implied volatilities of call and put options on individ-
ual bank shares (American style), traded at Borsa Italiana, Eurex, NYSE
Euronext, MEFF, Nasdaq OMX and Oslo Børs. Source. Bloomberg, codes
HIST CALL IMP VOL for calls and HIST PUT IMP VOL for puts.

Index Implied Volatilities Daily at-the-money implied volatilities of call and put options (European style)
on the STOXX Europe 600 Banks Index (SX7P Index) and the EURO STOXX
Banks Index (SX7E Index), traded at Eurex. Source. Bloomberg, codes
HIST CALL IMP VOL for calls and HIST PUT IMP VOL for puts.
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Table 6: Summary Statistics

Benchmark Model Eurozone Banks
PDD ADD PDD −ADD PDD ADD PDD −ADD

Mean 4.833 3.621 1.212 4.694 3.609 1.085
Median 4.364 3.462 0.814 4.132 3.546 0.712
Maximum 10.168 6.163 4.330 10.888 6.343 5.047
Minimum 0.893 0.339 -0.454 0.958 0.410 -0.817
Std. Dev. 2.209 1.411 0.991 2.234 1.412 1.005
Skewness 0.379 -0.121 0.934 0.496 -0.049 1.179
Kurtosis 2.054 2.084 2.895 2.128 2.016 3.888
Jarque-Bera Statistic 137.0* 83.8* 326.8* 162.9* 91.3* 592.4*
Observations 2240 2240 2240 2240 2240 2240

PUT-based Model GARCH(1,1)-based Model
PDD ADD PDD −ADD PDD ADD PDD −ADD

Mean 4.843 3.646 1.197 5.471 3.757 1.714
Median 4.308 3.468 0.782 5.105 3.738 1.357
Maximum 12.485 7.278 7.005 11.523 6.533 5.457
Minimum 0.768 0.369 -0.530 0.502 0.033 -0.080
Std. Dev. 2.254 1.431 1.077 2.602 1.491 1.225
Skewness 0.500 -0.100 1.403 0.200 -0.317 0.796
Kurtosis 2.448 2.077 5.231 2.051 2.286 2.667
Jarque-Bera Statistic 121.9* 83.2* 1199.6* 99.1* 85.2* 247.2*
Observations 2240 2240 2240 2240 2240 2240

Notes: This table presents some summary statistics of the DD estimates under alternative choices of the equity

volatility in the DD calibration. The benchmark model uses the average of put and all implied volatilities. The model

for the Eurozone banks does the same but for a smaller bank sample in the case of the ADD series and using the implied

volatilities of the EURO STOXX Banks Index. The PUT-based model uses only implied volatilities from put options,

while the GARCH(1,1)-based model uses volatilities The sample period runs from 30-Sep-2002 to 29-Apr-2011, yielding

2,240 daily observations in total. More details about the models are in Section 4.2. An asterisk (*) indicates a rejection of

the null hypothesis at the 0.05 level.
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Table 7: Granger Causality Tests

X PDD DDLCBG ADD DDLCBG PDD −ADD DDLCBG Lags
Y DDLCBG PDD DDLCBG ADD DDLCBG PDD −ADD

9.2960** 0.3409 9.9358** 1.4480 4.3131** 0.5886 1
4.6203** 2.1570 4.1809** 3.1928** 3.6260** 0.6386 2
3.3685** 2.3546* 2.8266** 2.8647** 2.9027** 1.5599 3
0.8942 2.7027** 1.4522 1.1849 1.1000 2.4833** 6
0.7975 1.4975 1.5690 1.0343 0.9672 1.4936 12
1.5336 1.0367 2.161** 1.1240 1.0934 1.7115* 24

X PDD DDEUmedian ADD DDEUmedian PDD −ADD DDEUmedian Lags
Y DDEUmedian PDD DDEUmedian ADD DDEUmedian PDD −ADD

9.8082** 1.9012 11.5817** 3.4081* 4.4287** 0.0868 1
4.1214** 1.4960 4.5748** 1.4610 2.5346* 0.9063 2
1.9776 0.8844 2.2155* 1.4751 1.4611 0.6109 3
0.5576 1.3161 1.2194 1.3442 0.9657 0.7811 6
1.1634 1.3623 1.8172* 1.3476 1.1521 1.3560 12
1.0517 2.0360 1.9579 2.1533 0.9604 0.6808 24

X PDDEURO DDEURO ADDEURO DDEURO PDD −ADDEURO DDEURO Lags
Y DDEURO PDDEURO DDEURO ADDEURO DDEURO PDD −ADDEURO

10.9018** 0.9389 11.8244** 1.5333 5.7993** 0.0071 1
7.8498** 0.8499 7.6786** 1.2485 4.5550** 0.0473 2
4.5188** 0.8082 4.3500** 1.2006 2.5088* 0.0672 3
1.5213 0.4484 2.1252* 0.8302 1.8206 0.3671 6

2.4581** 0.3621 2.0079** 0.5883 2.5752** 0.4083 12
1.8771** 0.3327 3.1077** 0.7585 1.1706 0.6741 24

X PDD SFS ADD SFS PDD −ADD SFS
Lags

Y SFS PDD SFS ADD SFS PDD −ADD
4.8485** 1.8459 8.1635** 4.0749** 1.1326 0.5218 1
2.4861* 1.5376 4.2115** 1.9664 0.9884 0.4902 2
0.5470 1.3731 1.2963 1.5571 0.2370 1.0131 3
0.8597 1.1547 2.6964** 0.6183 0.5657 0.8713 6
0.7804 0.6913 1.6985* 0.4530 0.4440 0.5384 12

2.0352** 0.7445 1.6665* 0.8866 0.8611 0.7306 24

X PDD DY CI ADD14 DY CI PDD −ADD14 DY CI
Lags

Y DY CI PDD DY CI ADD14 DY CI PDD −ADD14

3.3363* 0.1017 0.8347 1.9582 4.1474** 5.5061** 1
2.5983* 1.7760 1.3221 1.0912 4.6483** 1.3088 2
1.7217 1.1964 0.8915 0.9197 2.9926** 1.2148 3
1.4001 1.0760 0.4207 0.6995 1.6115 1.1828 6
1.0157 1.1550 0.3593 0.8401 1.5628 0.8371 12
0.8242 0.7747 1.8841 1.3023 1.8006 0.7587 24

The table reports F-statistics of the Granger Causality Tests where the null hypothesis is “X does not Granger

cause Y”. **,* indicate rejection of the the null at 5% and 10% levels, respectively. Averages are used to trans-

form ADD, PDD, ADDEURO and PDDEURO series into monthly frequencies. DDEU−median, DDLCBG and

DDEURO are obtained from European Central Bank (2009) and European Central Bank (2011). The Diebold-

Yilmaz Connectedness Index, DY CI, is obtained from http://www.financialconnectedness.org. Test samples,

subject to data availability: Sep-2002 to May-2009 for DDEU−median; Sep-2002 to Apr-2011 for DDGSIFI ,

DDEURO and SFS; and Jan-2004 to Apr-2011 for DY CI. ADD14 is a subsample of banks that matches the

DY CI banks sample.
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Figure 1: Forward looking Distance-to-Default series. 30-Sep-2002 - 29-Apr-2011

09-02 03-03 09-03 03-04 09-04 03-05 09-05 03-06 09-06 03-07 09-07 03-08 08-08 02-09 08-09 02-10 08-10 02-11
-1

1

3

5

7

9

11

 

 

09-02 03-03 09-03 03-04 09-04 03-05 09-05 03-06 09-06 03-07 09-07 03-08 08-08 02-09 08-09 02-10 08-10 02-11
0

200

400

600
Portfolio Distance-to-Default
Average Distance-to-Default
Difference
STOXX Europe 600 Banks Index

Source. Author’s calculations and Bloomberg.

Figure 2: Forward looking Distance-to-Default series. 31-Dec-2004 - 29-Apr-2011
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Figure 3: EURO Forward looking DD series. 30-Sep-2002 - 29-Apr-2011
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Source. Author’s calculations and Bloomberg.

Figure 4: EURO Forward looking DD series. 31-Dec-2004 - 29-Apr-2011
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Figure 5: Distance-to-Default series. 30-Sep-2002 - 29-Apr-2011
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Source. Author’s calculations, using PUT implied volatilities in DD calibration, and Bloomberg.

Figure 6: Distance-to-Default series - GARCH(1,1). 30-Sep-2002 - 29-Apr-2011
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Source. Author’s calculations, using volatilities derived from a GARCH(1,1) model in DD calibration, and
Bloomberg.
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Figure 7: Forward looking DD series vis-à-vis historical LCBG’s DD series
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Source. Author’s calculations and European Central Bank. Monthly averages for DD series.

Figure 8: Forward looking DD series vis-à-vis historical EU banks’ DD series
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Source. Author’s calculations and European Central Bank. Monthly averages for DD series.
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Figure 9: Forward looking DD series vis-à-vis historical Eurozone banks’ DD series
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Source. Author’s calculations and European Central Bank. Monthly averages for DD series.

Figure 10: Forward looking DD series vis-à-vis Systemic Financial Stress indicator
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Figure 11: Forward looking DD series vis-à-vis Diebold-Yilmaz Connectedness Index
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Source. Author’s calculations and www.financialconnectedness.org. The bank sample used to compute the ADD
series includes 14 banks only to match the DY CI sample.

Figure 12: PDD and ADD exceedance correlations
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Source. Author’s calculations based on Ang and Chen (2002) and Longin and Solnik (2001). The bivariate normal
distribution assumes a the same correlation coefficient between the standardized DD series (ρ = 0.9445).
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Figure 13: Portfolio and Weighted Average Implied Volatilities
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Figure 14: Differences: DD and Implied Volatilities
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Figure 15: Average Implied Correlation
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Figure 16: Asset-based Average Implied Correlation
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A Derivation of Individual Distance-to-Default Series

Given the three principles in CCA mentioned in Section 2.1, company value (represented by its assets, A) is the

sum of its risky debt (D) and equity (E). Since equity is a junior claim to debt, the former can be modeled and

calculated as a standard call option on the assets with exercise price equal to the value of risky debt (also known in

the literature as distress barrier or default barrier).

E = max{0, A−D} (A.1)

Given the assumption of assets distributed as a Generalized Brownian Motion, the application of the standard

Black-Sholes option pricing formula yields the closed-form expression of equity E as a European call option on the

bank’s assets A at maturity T:

E = AN(d1)− e−rTDN(d2) (A.2)

where r is the instantaneous rate of growth of assets, generally approximated by the risk-free rate, and N(•) is

the cumulative normal distribution. The values of d1 and d2 are expressed as:

d1 =
ln
(

A
D

)
+
(
r + 1

2
σ2
A

)
T

σA
√
T

(A.3)

d2 = d1 − σA
√
T (A.4)

where σA is the is asset volatility. The Merton model uses an additional equation that links the former to the

volatility of the bank’s equity σE by applying Itô’s Lemma:

EσE = AσAN(d1) (A.5)

The Merton model uses equations (A.2) and (A.5) to obtain the implied asset value A and volatility σA, which

are not observable and must be estimated by numerical methods. The equity volatility σE enters as initial value

of market value of σA in the iteration. The growth rate of the assets is proxied by risk-free interest rate r as in

Gropp et al. (2006) and most papers in the literature. Once a numerical solutions for A and σA are found, the

Distance-to-Default T periods ahead is calculated as:

DD =
ln
(

A
D

)
+
(
r − 1

2
σ2
A

)
T

σA
√
T

(A.6)

The implementation of (A.6) uses in general market value as the value of equity E; historical volatilities as equity

price return volatility σE ; government bond yields as the risk-free interest rate r and the face value of short-term lia-

bilities plus half of that of long-term liabilities as the default barrier D. The time horizon T is usually set at one year.

In this paper, the equity volatility is obtained from individual bank equity option implied volatilities. For

comparison (see Section 4), I use also volatilities estimated with a GARCH(1,1) with price return series starting in

January 1998. Frequent examples of this approach cited in the literature, with some implementation differences

and discussions, are found in Bharath and Shumway (2008); Crosbie and Bohn (2003); Gray and Malone (2008);

Gropp et al. (2006) and Vassalou and Xing (2004).

Alternatively, Duan (1994, 2000) and Duan et al. (2004) propose a computation method where A and σA are
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obtained based on a maximum likelyhood (ML) estimation and a one-to-one relationship between asset value A and

equity value E, yielding accurate estimates even in relatively small samples (Lando, 2004). Even though estimates

tend not to differ much, this approach provides also distributions of the estimates for testing hypotheses, which is

an advantage compared to the method used in this paper. However, the application of the maximum likelyhood

estimation would unable this work to profit from the information potential from option prices. In addition, Duan

et al. (2004) and Gropp et al. (2006) argue that one of the reasons why the ML is more attractive is the fact

that historical volatilities tend to understimate DD in periods of increasing stock prices and to do the opposite

during downturns. This issue is not present in the case of option implied volatilities, as they are market-determined

expectations of future volatility.

46



B Derivation of Portfolio Distance-to-Default Series

The Portfolio Distance-to-Default treats the portfolio of P banks in the sample as a single entity, thus the Merton

model assumptions still apply and the calculation method is the same as explained in Appendix A. Under these

assumptions, the calibration of the PDD requires some additional practical considerations, especially about the

difference between the approach in this paper and other applications in the literature, such as Annett et al. (2005);

De Nicolò and Tieman (2007); Echeverŕıa et al. (2006, 2009) and Gray and Malone (2008).

In particular, the closed-form expression of PDD T periods ahead is represented by the following expression:

PDD =
ln
(

AP

DP

)
+
(
rP − 1

2
σ2
P

)
T

σP
√
T

(B.1)

DP is the total value of the portfolio’s risky debt or distress barrier and is obtained by adding up the individual

distress barriers across the P banks in the sample, i.e. DP =
∑P

i=1Di.

rP is the instantaneous rate of growth of the portfolio’s assets and in general is proxied by a weighted average

of individual ri from government bond yields of each bank’s home market, i.e. rP =
∑P

i=1 wiri. The individual

weights wi are obtained from estimates of implied assets Ai, thus wi = Ai
AP . In this paper, rP is proxied by the

Eurozone synthetic 10-year government bond yield.

The remaining terms in (B.1), namely the portfolio asset volatility σP and the value of the portfolio assets AP ,

should be in principle obtained as in the case of individual banks, solving the system of equations (A.2) and (A.5).

The traditional approach aggregates individual estimates of implied assets Ai, thus AP =
∑P

i=1 Ai and it ag-

gregates the individual estimates of asset volatilities using a asset return based covariance structure, σ2
P =∑P

i=1

∑p
j=1 wiwjσij , where σij is the asset return covariance of banks i and j.

In this paper, the calibration of PDD does solve equations (A.2) and (A.5) to obtain σP and AP , hence the equity

market value of the portfolio, EP =
∑P

i=1 Ei, is obtained directly from the reference index on a daily basis, and the

equity volatility σE is obtained from index option implied volatilities. As a result, the difference between the PDD

and the ADD is not based on the covariance term in σP , but on additional signals from the option markets.
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