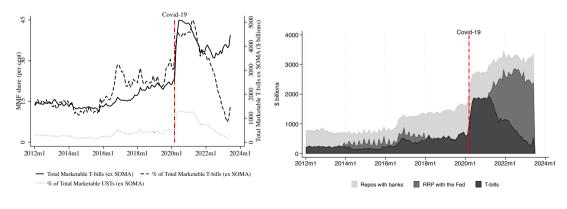
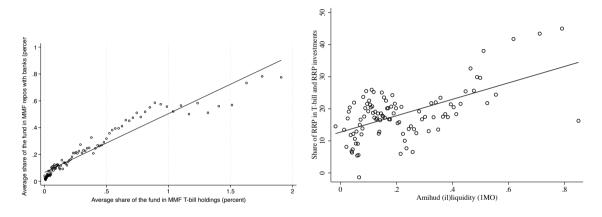
Money Market Funds and the Pricing of Near-Money Assets

Sebastian Doerr
Bank for International Settlements

Egemen Eren
Bank for International Settlements


Semyon Malamud Swiss Finance Institute, EPF Lausanne, and CEPR

9th IWH-FIN-FIRE Workshop on "Challenges to Financial Stability" October 2023


Disclaimer: The views are those of authors, they should not be attributed to the BIS.

Money market funds are important investors of near-money assets

- MMFs' total assets under management (AUM) are close to \$6 trillion
 - More than 20% of US GDP or total US commercial bank assets
- More than \$3 trillion of MMFs' AUM are held in safe and liquid "near-money" assets
 - T-bills, repos with banks and the Fed' RRP facility
 - High correlation of holdings with bill supply role as marginal investors

Two motivating observations: market concentration and liquidity

- Funds with a high share in the repo market also have a high share in the T-bill market, even conditional on AUM
- When the Tbill mkt is more illiquid, RRP holdings increase relative to T-bill holdings

This paper - Theory

- A model of strategic interactions of MMFs with each other and with banks.
- MMFs invest in repos with banks or T-bills or the RRP.
- MMFs set repo rates.
 - Probability of a deal depends (+) fund size and (-) on the repo rate.
 - Banks have downward-sloping demand for repos.
- T-bill rate is determined by market clearing. MMFs have price impact.
- RRP rate is set by the Fed.
 - Assume a non-monetary cost for RRP to match the interior shares in the data.
 - RRP alleviates, but does not eliminate the trade-offs.

This paper - Theory

- Key innovation:
 - If there is a large player with price impact in both markets and markets are connected through quantities (e.g. portfolio allocation), ...
 - ...then decisions/conditions in one market affect decisions/conditions in the other.
- Trade-off:
 - Market/bargaining power (price impact) in repo vs price impact in T-bills.

 $\mathsf{repo}\;\mathsf{rate}\;\uparrow\to\mathsf{bank}\;\mathsf{repo}\;\mathsf{demand}\;\downarrow\to\mathsf{``residual}\;\mathsf{cash''}\;\uparrow\to\mathsf{MMF}\;\mathsf{T-bill}\;\mathsf{demand}\;\uparrow\to\mathsf{T-bill}\;\mathsf{rate}\;\downarrow$

This paper - Empirics

- MMFs have an economically large price impact in the T-bill market:
 - When MMFs bring more cash to the T-bill market $\rightarrow \downarrow$ T-bill rates.
 - We devise instrumental variables to show this effect is causal.
- Using a granular holding-level dataset, we show:
 - MMFs internalize their price impact in the T-bill market when they set repo rates.
 - and this effect gets stronger when Tbill market is less liquid.
 - When Treasury market liquidity is low, invest more in RRP compared to T-bills.
- Results help open up the black box of T-bill "convenience yields":
 - Measures of the T-bill liquidity premium do not entirely capture preference for liquidity
 - Part of it is driven by intermediation frictions and market illiquidity
- Policy implications:
 - Transmission of monetary policy/role of CB balance sheets
 - Regulation of the MMF sector
 - Government debt issuance/Treasury mkt liquidity

Testable predictions

- On aggregate, MMFs have an impact on the T-bill market:

$$residual\ cash\ share_t \equiv \left(1 - rac{\sum_f repo_{f,t}}{\sum_f repo_{f,t} + Tbill_{f,t} + RRP_{f,t}}
ight) imes 100$$

Prediction 1: ↑ residual cash → ↓ T-bill rates

Micro data:

- Repo rates MMFs charge repo mark-ups but internalize their T-bill price impact.
 - **Prediction 2:** ↑ repo market power → ↑ repo rates
 - **Prediction 3:** \uparrow T-bill market share $\rightarrow \downarrow$ repo rates ($\downarrow \downarrow$ if the Tbill mkt is illiquid)
- MMF portfolio allocations:
 - **Prediction 4:** \uparrow residual cash & \downarrow Treasury market liquidity \rightarrow \uparrow $\frac{RRP}{RRP+Tbills}$

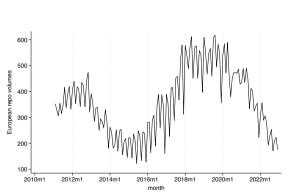
MMFs aggregate impact on the T-bill market

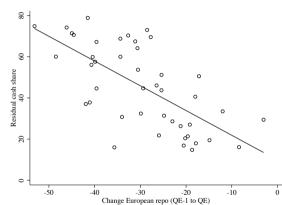
- Sample period: February 2011 June 2023.
- Micro data: Detailed month-end snapshots at portfolio holding level.
- Aggregate data: FRED, Bloomberg, NYFed, US Treasury

Variable	Obs	Mean	Std. Dev.	Min	Max	P50
RRP(1M) - Tbill(1M)	143	-2	10.7	-44.71	44.25	-1
GC (1M) - Tbill (1M)	143	12.84	9.66	-4.74	43.5	10.93
residual cash share	143	39.26	21.63	7.31	86.23	35
$\%\Delta$ EU repo (quarter-end)	48	-31.45	16.45	-75.94	.23	-29.6
HHI bank repo	143	260.37	72.9	160.12	384.69	278.59
FFR	143	.68	.88	.05	4.1	.14
log(bills to GDP)	143	-2.23	.28	-2.67	-1.43	-2.31
VIX	143	18.38	6.81	10.13	57.74	16.7

MMFs aggregate impact on the T-bill market

Instrumental variables approach


$$RRP(1M)_t - Tbill(1M) = \beta residual cash share_t + controls_t + \epsilon_t, \quad \beta < 0$$
 (1)


(2)

Use two distinct instruments for residual cash share:

- 1. At quarter-ends, European banks withdraw from repo markets (until 2023).
 - Instrument: Change in European repos between QE-1 and QE (-).
 - Relevance: When European repo ↓, residual cash share ↑.
 - Exclusion: Decision based on global banking activities during the quarter exo. to MMFs.
- 2. Our theory gives us another instrument: repo market HHI
 - \uparrow Repo market HHI \rightarrow \uparrow repo markups (\downarrow repo demand) \rightarrow \uparrow residual cash share

Change of European repo volume at quarter-ends as an instrument

MMF price impact in the T-bill market is large

- Partial impact of 1sd \uparrow RCS \approx 6bps on RRP-Tbill (1 sd=10 bps), \uparrow if Tbill mkt is illiquid
- This is beyond Tbill scarcity (after controlling for bill supply)

	(1)	(2)	(3)	(4)	(5)
VADIADIES	OLS	OLS	OLS	2SLS	2SLS
VARIABLES	RRP-Tbill	RRP-Tbill	RRP-Tbill	RRP-Tbill	RRP-Tbill
residual cash share	0.23**	0.37***	0.33***	0.32***	0.32***
	(0.09)	(0.10)	(0.04)	(0.12)	(0.05)
Amihud	, ,	,	-14.52***	, ,	-22.42***
			(2.53)		(4.65)
residual cash share \times Amihud			0.35***		0.47***
			(0.05)		(0.10)
FFR		-1.32	-4.45***	2.39	-3.10*
		(2.27)	(1.01)	(4.06)	(1.77)
log(bills to GDP)		-19.29***	-9.28***	-12.57***	-5.38***
		(4.55)	(1.94)	(3.80)	(1.48)
VIX		0.01	-0.38**	-0.12	-0.41***
		(0.31)	(0.17)	(0.35)	(0.16)
Observations	143	143	143	48	48
R-squared	0.22	0.41	0.71		
Anderson-Rubin test (p-val)				0.01	0.05
F stat				18.78	3.32
IV Confidence set 1					[0.23,0.38]
IV Confidence set 2					[0.35,0.71]

11/29

MMF price impact in the T-bill market: Alternative IV

	(1) 2SLS	(2) 2SLS	(3) 2SLS	(4) 2SLS	(5) 2SLS	(6) 2SLS
VARIABLES	RRP-Tbill	RRP-Tbill	HHI RRP-Tbill	HHI post RRP-Tbill	HHI post RRP-Tbill	EU+HHI RRP-Tbill
residual cash share	0.33***	0.32***	0.25*** (0.08)	0.71*** (0.08)	0.54* (0.32)	0.29***
Amihud	(0.12)	-22.35***	(0.00)	(0.00)	(0.32)	(0.10)
residual cash share \times Amihud		(4.84) 0.47*** (0.11)				
$\%\Delta$ foreign banks' treasury (quarter-end)	0.18 (0.15)	0.04 (0.11)				
share gov funds	(0.15)	(0.11)			0.90 (1.47)	
FFR	2.54 (4.01)	-3.14* (1.88)	-0.88 (2.91)	1.30 (1.19)	3.08	2.52 (4.23)
log(bills to GDP)	-12.59*** (3.81)	-5.19*** (1.49)	-15.20*** (4.13)	-19.02*** (6.71)	-12.90 (14.07)	-11.65*** (3.38)
VIX	-0.10 (0.32)	-0.41** (0.17)	0.03 (0.32)	-0.41** (0.19)	-0.39* (0.22)	-0.12 (0.35)
Observations	48	48	143	75	75	48
Anderson-Rubin test (p-val)	0.00	0.05	0.01	0.00	0.32	0.02
F stat	16.60	3.29	9.62	47.12	4.19	4.35
IV Confidence set 1		[0.23; 0.52]				
IV Confidence set 2		[0.38; 1.25]				
Hansen J-stat (p)						0.29

Evidence for the repo 'pricing power' - T-bill 'price impact' trade-off

- \uparrow MMF repo market share (or bargaining power) $\rightarrow \uparrow$ repo rate.
- \uparrow MMF T-bill market share $\rightarrow \downarrow$ repo rate ($\downarrow \downarrow$ when T-bill mkt less liquid).

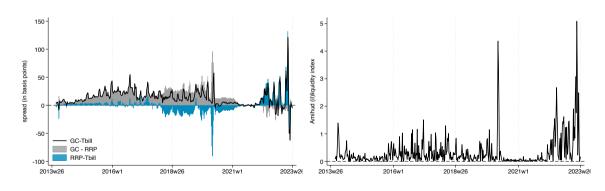
	(1)	(2)	(3) FF	(4)	(5) FF	(6)	(7) FF
VARIABLES	rate	rate	rate	rate	rate	rate	rate
F MS bank repo	0.234***	0.239***					
FF MS bank repo			0.102** (0.048)				
F bargaining power (repo)				0.037** (0.017)		0.002 (0.013)	
FF bargaining power (repo)					0.066***		0.025**
F MS treasury	-0.310*** (0.091)	-0.328*** (0.091)		-0.137** (0.065)		-0.209*** (0.074)	
F MS treasury \times Amihud		-0.164* (0.091)		-0.150* (0.091)		-0.169* (0.091)	
FF MS treasury			-0.049 (0.055)		-0.013 (0.036)		-0.083** (0.038)
FF MS treasury \times Amihud			-0.072*** (0.015)		-0.072*** (0.015)		-0.079*** (0.014)
Observations	275,331	275,331	382,985	275,331	382,985	275,292	382,955
R-squared	0.752	0.752	0.739	0.751	0.739	0.764	0.761
collateral*time FE	✓	✓	✓	✓	✓	✓	✓
bank*fund type*time FE bank*FF FE	-	-	-	√ -	-	√	√
controls	✓	✓	✓	✓	✓	✓	✓

MMFs tilt portfolios toward RRP when Treasury market liquidity is low

RRP share_{f,t} =
$$\delta_1$$
 F residual cash share_{f,t} + δ_2 F residual cash share_{f,t} × illiquidity_t + controls_{f,t} + ϕ_f + θ_t + $\varepsilon_{f,t}$.

- \uparrow Residual cash AND \uparrow market illiquidity \rightarrow \uparrow RRP share

	(1)	(2)	(3)	(4)	(5)
VARIABLES	RRP share	RRP share	RRP share	RRP share	Δ RRP share
F residual cash share	0.568***	0.562***	0.599***	0.509***	0.227***
	(0.027)	(0.027)	(0.027)	(0.031)	(0.022)
F residual cash share $ imes$ illiquidity		0.051***	0.058***		
		(800.0)	(0.010)		
F residual cash share \times debt ceiling				0.074**	
				(0.029)	
F residual cash share $\times \Delta$ illiquidity					0.011*
					(0.007)
Observations	13.777	13.777	12.619	12.619	12.528
R-squared	0.703	0.705	0.751	0.747	0.269
time FE			0.751	0.747	0.269
	✓.	√	-,	-	-,
fund FE	✓	✓	✓	✓.	✓
fund type*time FE	-	-	✓	✓	✓
controls	-	-	✓	✓	✓


Implications for "the liquidity premium" of T-bills

- 1m GC repo Tbill rate is a commonly used measure of the liquidity premium of T-bills.
- Intended to be a measure of the preference for liquidity.

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	2SLS	2SLS	2SLS
VARIABLES	GC-Tbill	GC-Tbill	GC-Tbill	RRP-Tbill	GC-RRP
residual cash share		0.10*	0.30***	0.32***	-0.02
		(0.06)	(0.09)	(0.12)	(0.14)
FFR	3.32***	2.94**	6.19***	2.39	3.80
	(1.09)	(1.32)	(1.47)	(4.06)	(4.42)
log(bills to GDP)	-18.76***	-22.37***	-31.88***	-12.57***	-19.31***
	(3.91)	(4.75)	(5.12)	(3.80)	(6.66)
VIX	0.23	0.21	0.33***	-0.12	0.45
	(0.16)	(0.14)	(0.12)	(0.35)	(0.44)
Observations	143	143	48	48	48
R-squared	0.31	0.34			
Anderson-Rubin test (p-val)			0.00	0.01	0.87
F stat			26.99	18.78	24.82
R-squared Anderson-Rubin test (p-val)			0.00	0.01	0.87

The measured liquidity premium is not entirely due to preferences

- RRP is safer and more liquid than T-bills.
- Since 2022, most of the measured liq. premium is driven by a positive RRP-Tbill spread
- Suggestive that intermediation frictions and market illiq. drive part of the measurement.

Policy implications

- Transmission of monetary policy (interest rates):
 - \uparrow Fed funds rate $\rightarrow \uparrow$ inflows to MMFs.
 - T-bill price impact $\rightarrow \downarrow$ pressure on T-bill rates \rightarrow weaker transmission mechanism.
- The size of the central bank balance sheet is important for the transmission:
 - A large central bank balance sheet and availability of RRP alleviates this concern.
 - A small central bank balance sheet and small RRP exacerbates the T-bill price impact.
- Treasury market liquidity is important for the transmission of monetary policy.
- The government leaves money on the table:
 - The government can adjust its short-term debt issuance to match demand by MMFs.
- Regulation of MMFs:
 - 2016 reform increased concentration.
 - Rising footprint of government MMFs investment universe limited.
- MMFs have price impact in the most liquid market of the world. Global implications.

APPENDIX

Market power in the repo market vs price impact in the T-bill market

 $\textbf{Fund repo HHI} \uparrow \rightarrow \uparrow \textbf{repo rate} \rightarrow \downarrow \textbf{repo demand} \rightarrow \uparrow \textbf{"residual cash"} \rightarrow \uparrow \textbf{T-bill demand} \rightarrow \downarrow \textbf{T-bill rate}$

- Equilibrium Repo Rates without T-Bills:

$$r_f(b) = \underbrace{r_*(b)}_{\text{markup s.t. bank demand}} + \underbrace{F(H(W))}_{\text{additional markup}} \text{ where } F'(H(W)) > 0$$
 (3)

- Residual Cash=Assets-repo lending:

$$\Delta_f = d_f - \underbrace{\sum_b (R_*/r_f(b))^{\xi} \frac{r_f(b)^{-b} w_f}{\Gamma_*(b)}}_{\text{repo lending given banks' demand curves}} \text{ where } \Delta_f'(r_f(b)) > 0 \tag{4}$$

- T-Bill rate pinned down by market clearing:

$$\hat{\rho} = \rho_* + \underbrace{\frac{S - a - \sum_f a_*(f)\Delta_f}{+ \sum_{f *}(f)\Delta_f}}_{\text{demand-supply imbalance}} \text{ where } \hat{\rho}'(\Delta_f) < 0 \tag{5}$$

When Treasury market liquidity is low, RRP is preferred to T-bills.

The Model I

- B banks, $b = 1, \dots, B$; F funds, $f = 1, \dots, F$.
- Probability of repo deal between b and f of size w_f and repo rate $r_f(b)$

$$\pi_f(r_f(b);b) = \frac{r_f(b)^{-\alpha_b} w_f}{\sum_{\phi=1}^F r_{\phi}(b)^{-\alpha_b} w_{\phi}},$$
 (6)

banks' demand for liquidity

$$\ell(r_f(b)) = \underbrace{r_f^{-\xi} R_*^{\xi}}_{\text{downward sloping demand for repos}} \tag{7}$$

The Model II

- Equilibrium Repo Rates without T-Bills:

$$r_f(b) = r_*(b) + \underbrace{F(H(W))}_{additional\ markup}$$
 (8)

with

$$r_*(b) = \rho + \underbrace{\rho \frac{1}{\xi + \alpha_b - 1}}_{markup},$$

where

$$H(W) = F^{-1} \sum_{f} (w_f)^2$$
 (10)

is the Herfindahl index of fund size distribution.

(9)

Equilibrium Rates with T-Bills I

- ρ is the T-Bill rate; ρ_* = outside option (RRP)
- Δ_f is the residual cash share:

$$\Delta_f = deposits - repo lending$$

 $D_{\epsilon}^{T}(\rho) = (a_{*}(f) + \lambda_{*}(f)(\rho - \rho_{*}))\Delta_{f}$

fund demand curves for T-Bills:

with some fund-specific coefficients $a_*(f)$, $\lambda_*(f) > 0$.

- T-Bill rate pinned down by market clearing:

$$\hat{
ho} =
ho_* + \underbrace{rac{S-a-\sum_f a_*(f)\Delta_f}{\lambda+\sum_f \lambda_*(f)\Delta_f}}_{ ext{demand-supply imbalance}},$$

(13)

(11)

(12)

Equilibrium Rates with T-Bills II

Theorem

Suppose that fund f takes the repo rates charged by other funds, r_{ϕ} , $\phi \neq f$, as given. Then, the equilibrium T-bill rate responds to changes in funds' repo rate, $r_f(b)$, for any b. The sensitivity, $\frac{\partial \hat{\rho}}{\partial r_f(b)}$, is negative and its absolute value is larger for funds with bigger w_f and d_f .

Theorem

The optimal repo rate set by fund f for bank b is monotone increasing in the fund market power, as captured by w_f^* , and is monotone decreasing in the fund's residual cash.

23/29

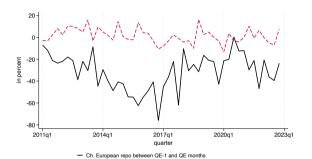
Equilibrium RRP choice I

- investing in RRP is associated with an implicit, non-monetary cost:

$$\xi_f(\theta_{ff}) + 0.5\beta_f(\theta_{ff})^2, \tag{14}$$

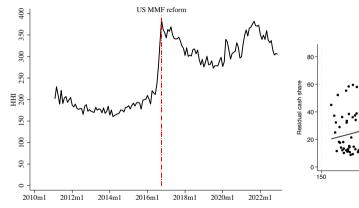
- strategic trading by all funds, accounting for their impact:
 - endogenizes demand curves for T-Bills through strategic competition.

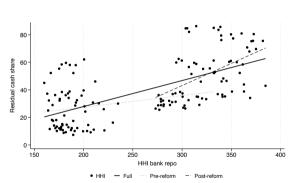
Theorem

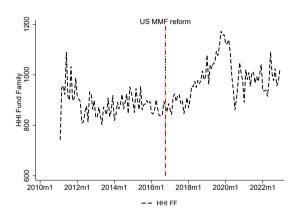

The following is true.

- T-bill liquidity is negatively related to the residual cash $_f$.
- A drop in T-bill liquidity leads to an increase in the share of residual cash invested in the RRP.
- Funds with larger residual cash f invest more into RRP, and more so when markets are illiquid.
- The elasticity of funds' T-bill investments with respect to the T-bill rate is negatively related to T-bill illiquidity.

Data description


- Crane data:
 - Detailed holding level data from regulatory filings.
 - Between February 2011-November 2022. Month-end snapshots.
 - Focus only on repos, Tbills, RRP as these are the closest assets to money.
- Aggregate data:
 - FRED, US Treasury, Bloomberg, FRBNY


European banks' repo volume


- Ch. foreign bank treasury holdings between QE-1 and QE months

Repo market HHI as an instrument

HHI bank repo measured at fund family level

Treasury market liquidity and MMF portfolio allocation

RRP share_{f,t} =
$$\delta_1$$
 FMS treasury_{f,t} + δ_2 liquidity tightness_t (15)
+ δ_3 FMS treasury_{f,t} × liquidity tightness_t + controls_{f,t} + θ_t + θ_f + $\varepsilon_{f,t}$. (16)

Table: Summary statistics (fund-time level)

Variable	Obs	Mean	Std. Dev.	Min	Max	P50
RRP share	12997	16.94	30.75	0	99.87	0
FMS treasury	12997	.44	.87	0	10.53	.09
liqu tight (BBG index)	12997	1.3	.48	.67	2.76	1.25