Monetary Policy Transmission with Adjustable and Fixed Rate Mortgages: The Role of Credit Supply

Fatih Altunok (Central Bank of the Republic of Turkey)
Yavuz Arslan (University of Liverpool)
Steven Ongena (U. Zurich, SFI, NTNU, KU Leuven)

9th IWH-FIN-FIRE Workshop, October 20 2023, Halle (Saale)

Views expressed here are those of authors and do not reflect the views of the CBRT.

Motivation: When interest rates increase

- ...borrowers with adjustable rate mortgages (ARM)s

Motivation: When interest rates increase

- ...borrowers with adjustable rate mortgages (ARM)s
- face higher mortgage payments, hence lower disposable income \rightarrow lower consumption demand
- which can speed up/strengthen MP transmission

Motivation: When interest rates increase

- ...borrowers with adjustable rate mortgages (ARM)s
- face higher mortgage payments, hence lower disposable income \rightarrow lower consumption demand
- which can speed up/strengthen MP transmission
- Mishkin (2007), Garriga et al (2017, RFS):
- Larger the share of ARM in an economy, the stronger MP transmission

Motivation: When interest rates increase

- ...borrowers with adjustable rate mortgages (ARM)s

■ face higher mortgage payments, hence lower disposable income \rightarrow lower consumption demand

- which can speed up/strengthen MP transmission
- Mishkin (2007), Garriga et al (2017, RFS):
- Larger the share of ARM in an economy, the stronger MP transmission
- Maggio et al (2017, AER):
- A sizable decline in mortgage payments (up to 50 percent) $\rightarrow \mathrm{a} \uparrow$ increase in car purchases (up to 35 percent)
- Regions with a larger share of ARMs \rightarrow a relative \downarrow in defaults, an \uparrow in house prices, car purchases, and employment

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending, equity prices

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending, equity prices
- Similar mechanisms :
- English et al (2018) (maturity mismatch)

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending, equity prices
- Similar mechanisms :
- English et al (2018) (maturity mismatch)
- Gomes et al (2020) (income gap)

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending, equity prices
- Similar mechanisms :
- English et al (2018) (maturity mismatch)
- Gomes et al (2020) (income gap)
- Paul (2023) (maturity mismatch)

Motivation: When interest rates increase

- ...but, higher mortgage payments benefits the lenders (this paper)
- improves bank balance sheets (higher expected mortgage interest income)
- and increases bank lending, equity prices
- Similar mechanisms :
- English et al (2018) (maturity mismatch)
- Gomes et al (2020) (income gap)
- Paul (2023) (maturity mismatch)
- In a closed economy, the net effect depends on the "marginal" agent in the economy.
- During a banking crises, banks will likely dominate (2008 Crisis)
- The current episode of increasing interest rates: Indebted households

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.
- ARMs: 30 percent of residential mortgages (large variation across countries)

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.
- ARMs: 30 percent of residential mortgages (large variation across countries)
- Mortgages are extensively securitized : Fannie Mae and Freddie Mac

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.
- ARMs: 30 percent of residential mortgages (large variation across countries)
- Mortgages are extensively securitized : Fannie Mae and Freddie Mac
- But, banks continue to retain a substantial portion on their balance sheets

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.
- ARMs: 30 percent of residential mortgages (large variation across countries)
- Mortgages are extensively securitized : Fannie Mae and Freddie Mac
- But, banks continue to retain a substantial portion on their balance sheets
- Two-fold composition of an ARM contract:

■ index: U.S. prime rate and the Constant Maturity Treasury rate
■ margin: borrower's creditworthiness

Motivation: Mortgages in the US

- Mortgage debt is large: more than 70 percent of total household liabilities.
- ARMs: 30 percent of residential mortgages (large variation across countries)
- Mortgages are extensively securitized : Fannie Mae and Freddie Mac
- But, banks continue to retain a substantial portion on their balance sheets
- Two-fold composition of an ARM contract:

■ index: U.S. prime rate and the Constant Maturity Treasury rate

- margin: borrower's creditworthiness
- A typical ARM contract:

■ initial fixed term period: The most common; 3/1, 5/1, 7/1 and 10/1

- adjustable period: ARM with caps of $2 / 2 / 5$
- initial adjustment cap (2\%)
- subsequent adjustment cap (2%)
- lifetime adjustment cap (5\%)

Motivation: Mortgages and ARMs in the US

Residential Mortgages/Assets

ARM/Residential Mortgages

Source: Call Reports.

Hypothesis and Strategy

Hypothesis: When Fed tightens, banks with higher ARM share perform better due to higher expected interest income.

Data

- Center for Research in Security Prices (CRSP) data for daily stock returns (2003-2013)

■ Match with US call reports (link file by NY FED)

Data

- Center for Research in Security Prices (CRSP) data for daily stock returns (2003-2013)

■ Match with US call reports (link file by NY FED)

- US Call Reports (CR) for bank level (1997-2013) (Quarterly)

■ U.S. Consolidated Reports of Condition and Income filings
■ ARM: RCON5370 (adjustable rate for 1-4 family residential properties)

- 3000 banks

Data

- Center for Research in Security Prices (CRSP) data for daily stock returns (2003-2013)

■ Match with US call reports (link file by NY FED)

- US Call Reports (CR) for bank level (1997-2013) (Quarterly)

■ U.S. Consolidated Reports of Condition and Income filings
■ ARM: RCON5370 (adjustable rate for 1-4 family residential properties)

- 3000 banks
- Dealscan (DS) for bank-firm level (1997-2013) (Quarterly)

■ Loan Pricing Corporation (LPC) from SEC filings
■ 150177 bank-firm level observations

- Matched with Call reports manually

Data

- Center for Research in Security Prices (CRSP) data for daily stock returns (2003-2013)

■ Match with US call reports (link file by NY FED)

- US Call Reports (CR) for bank level (1997-2013) (Quarterly)

■ U.S. Consolidated Reports of Condition and Income filings
■ ARM: RCON5370 (adjustable rate for 1-4 family residential properties)

- 3000 banks
- Dealscan (DS) for bank-firm level (1997-2013) (Quarterly)

■ Loan Pricing Corporation (LPC) from SEC filings
■ 150177 bank-firm level observations

- Matched with Call reports manually
- High frequency MP shock series

■ Ferrari et al. (2021): monetary policy decisions, releases of minutes of policy meeting, and press releases.

Data

Data	Variable	\# Observations	Mean	Median	SD	Min	Max
CRSP	\% Change in Stock Prices (daily)	44967	0.190	0.000	4.143	-36.84	35.667
CRSP	Assets (Billion, in 2010 USD)	44967	28.89	1.846	182.25	0.05	2626.67
CRSP	ARM/A (\%)	44967	5	3.2	5.3	0.00	31.4
CRSP	RELoans/A (\%)	44967	49.8	51.4	15.7	0.00	86.3
CR	$\% \Delta$ in Commercial Loans (Quarterly)	30519	2.8	1.58	14.33	-176.6	107.4
CR	Assets (Billion, in 2010 USD)	30519	15.77	1.77	88.98	0.45	1873.86
CR	ARM/A (\%)	30519	6	3	7.5	0.00	42.80
CR	RELoans/A (\%)	30519	41.8	42.6	17.9	0.00	83.60
DS	Log(Loans)	150177	16.9	16.9	1.252	5.145	23.153
DS	Assets (Billion, in 2010 USD)	150177	424.30	160.68	496.721	0.493	1873.869
DS	ARM/A (\%)	150177	3.9	2.9	3.6	0.00	33.5
DS	RELoans/A (\%)	150177	24.5	25.9	12.3	0.00	80.4

How does ARM share affect bank stock price response to monetary policy surprises?

Bank Stock Price Regression Model

$$
\Delta Y_{i, t}=\boldsymbol{\alpha} * \boldsymbol{A R} \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{t}} * \boldsymbol{M P}_{\text {shock }, \boldsymbol{t}}+\sum \boldsymbol{\gamma}_{i}\left(\boldsymbol{B} \boldsymbol{V}_{\boldsymbol{i}, \boldsymbol{t}} * \boldsymbol{M P}_{\text {shock }, \boldsymbol{t}}\right)+\beta * Y_{i, t-1}+v_{t}+\theta_{i}+\epsilon_{i, t}
$$

- $\boldsymbol{\Delta} \boldsymbol{Y}_{i, t}$ percent change in stock prices of bank i between day $t+1$ and $t-1$,
- $A R M_{i, t}$ share of ARM loans relative to assets,
- $M P_{\text {shock, } t}$ surprise change in short term (1 month) yields around monetary policy events,
- $\boldsymbol{B} V_{i, t}$ is bank balance sheet variables : Kashyap (1995), Kashyap (2000), Kishan (2000), Drechsler (2017)
- Log(Assets), Equity, Liquidity, NPL, Balances due From Fed, HHI (deposits), Assets Maturing in Less than a Year, Deposits
- Structure of Bank Liabilities: Saving Deposits, Time Sensitive Deposits, Fed Repo Liabilities
- $\boldsymbol{v}_{\boldsymbol{t}}$ and $\boldsymbol{\theta}_{\boldsymbol{i}}$ are time and bank fixed effects.

High Frequency Monetary Policy Shocks

High Frequency Monetary Policy Shocks (Basis Points)

Source: Ferrari et al. (2021)

Stock Market Reactions to High Frequency Shocks

Dependent Variable: Change in bank stock prices						
Explanatory Variables	(1)	(2)	(3)	(4)	(5)	(6)
$\alpha * A R M_{i, t} * M P_{\text {shock }}$ standard errors	$\begin{gathered} 0.015^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.008^{*} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.011^{* *} \\ (0.005) \end{gathered}$	$\begin{aligned} & 0.011^{* *} \\ & (0.0064) \end{aligned}$	$\begin{gathered} 0.012^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.012^{* * *} \\ (0.004) \end{gathered}$
TIME FE	N	N	N	Y	Y	Y
YEAR*MONTH FE	N	N	Y	-	-	-
BANK FE, DEPENDENT VAR. LAGS, BANK CONTROLS	Y	Y	Y	Y	Y	Y
BANK CONTROLS* ${ }^{\text {M }}$ shock	N	Y	Y	Y	Y	Y
BANK LIABILITY CONTROLS	N	N	N	N	Y	Y
BANK LIABILITY CONTROLS* ${ }^{\text {P }}$ shock	N	N	N	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	N	N	N	Y
BANK FED FUNDS LIABILITY* ${ }^{\text {M }}$ shock	N	N	N	N	N	Y
Impact of 25bp Increase in MP Shock (PP) (Diff. between 75th (0.071) and 25th (0.014) percentiles)	2.17	1.16	1.59	1.59	1.73	1.73
Observations	25008	25008	25008	25008	25008	25008
R-squared	0.159	0.161	0.314	0.367	0.367	0.367

Stock Market Asymmetric Reactions

Dependent Variable: Change in bank stock prices						
Explanatory Variables	(1)	(2)	(3)	(4)	(5)	(6)
$\alpha^{+} * A R M_{i, t} * M P_{\text {shock }}^{+}$ standard errors	$\begin{gathered} 0.026^{* * *} \\ (0.01) \end{gathered}$	$\begin{aligned} & 0.019^{*} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.02^{* *} \\ & (0.01) \end{aligned}$	$\begin{gathered} 0.02^{* *} \\ (0.01) \end{gathered}$	$\begin{gathered} 0.021^{* *} \\ (0.01) \end{gathered}$	$\begin{gathered} 0.021^{* *} \\ (0.01) \end{gathered}$
$\alpha^{-} * A R M_{i, t} * M P_{\text {shock }}^{-}$	$\begin{aligned} & -0.004 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.016) \end{aligned}$	$\begin{gathered} -0.008 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.016) \end{aligned}$
TIME FE	N	N	N	Y	Y	Y
YEAR*MONTH FE	N	N	Y	-	-	-
BANK FE, DEPENDENT VAR. LAGS, BANK CONTROLS	Y	Y	Y	Y	Y	Y
BANK CONTROLS	Y	Y	Y	Y	Y	Y
BANK CONTROLS* ${ }^{*} P_{\text {shock }}$	N	Y	Y	Y	Y	Y
BANK LIABILITY CONTROLS	N	N	N	N	Y	Y
BANK LIABILITY CONTROLS* ${ }^{\text {P }}$ shock	N	N	N	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	N	N	N	Y
BANK FED FUNDS LIABILITY* ${ }^{*} P_{\text {shock }}$	N	N	N	N	N	Y
Observations	7906	7906	7906	7906	7906	7906
R-squared	0.256	0.269	0.399	0.399	0.399	0.399

How does ARM share affect bank lending?

Bank Lending Regression Model

$$
\begin{aligned}
\Delta Y_{i t}= & \sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=\mathbf{4}} \boldsymbol{\alpha}_{\boldsymbol{k}}\left(A \boldsymbol{R} \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{t}-\mathbf{1}} * \Delta \boldsymbol{F F R}_{\boldsymbol{t}-\boldsymbol{k}}\right)+\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=\mathbf{4}} \boldsymbol{\sigma}_{\boldsymbol{k}}\left(A \boldsymbol{R} \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{t}-\mathbf{1}} * \Delta \boldsymbol{M a c r o s}_{\boldsymbol{t}-\boldsymbol{k}}\right) \\
& +\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=4} \gamma_{i, k}\left(\boldsymbol{B} V_{i, t-1} * \Delta \boldsymbol{F F} \boldsymbol{R}_{\boldsymbol{t}-\boldsymbol{k}}\right)+\sum_{k=0}^{k=4} \lambda_{k} Y_{i, t-k}+v_{t}+\theta_{i}+\epsilon_{i, t}
\end{aligned}
$$

- $\boldsymbol{\Delta} \boldsymbol{Y}_{\boldsymbol{i}, \boldsymbol{t}}$ percent change in C\&I lending,
- $\boldsymbol{A R} \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{t}}$ share of ARM loans relative to assets,
- $\boldsymbol{\Delta F F R}$ quarterly change in federal funds rate:
- Data constraints, small magnitude of shocks, unexpected macroeconomic developments, actual change in interest rate
- $\boldsymbol{B} \boldsymbol{V}_{\boldsymbol{i}, \boldsymbol{t}-\mathbf{1}}$ bank balance sheet variables
- Macros GDP, inflation, house prices, mortgage demand,
- $\boldsymbol{v}_{\boldsymbol{t}}$ and $\boldsymbol{\theta}_{i}$ are time and bank fixed effects.

Quarterly Change in Federal Funds Rate

Commercial Loans at Bank Level

Dependent Variable: Change in Commercial Loans					
Explanatory Variables	(1)	(2)	(3)	(4)	(5)
$\sum_{k=0}^{k=4} \alpha_{k}\left(A R M_{i, t-1} * \Delta F F R_{t-k}\right)$ standard errors	$\begin{gathered} 0.153^{* * *} \\ (0.052) \end{gathered}$	$\begin{aligned} & 0.134^{* *} \\ & (0.069) \end{aligned}$	$\begin{aligned} & 0.133^{* *} \\ & (0.067) \end{aligned}$	$\begin{aligned} & 0.136^{* *} \\ & (0.067) \end{aligned}$	$\begin{aligned} & 0.129^{* *} \\ & (0.067) \end{aligned}$
TIME FE, BANK FE	Y	Y	Y	Y	Y
DEPENDENT VAR. LAGS, BANK CONTROLS	Y	Y	Y	Y	Y
$\sum_{\substack{k=0 \\ k=4}}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK CONT. } * \Delta F F R_{t-k}\right)$	N	N	Y	Y	Y
$\sum_{k=0}^{k=4} \sigma_{k}\left(A R M_{i, t-1} * \operatorname{MACROS}_{t-k}\right)$	N	Y	Y	Y	Y
BANK LIABILITY CONTROLS	N	N	N	Y	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK LIABILITY CONT. } * \Delta F F R_{t-k}\right)$	N	N	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	N	N	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK FED FUNDS LIAB. } * \Delta F F R_{t-k}\right)$	N	N	N	N	Y
Impact of 1 SD Increase (0.38) in FFR (PP) (Diff. between 75 th (0.083) and 25 th (0.009) percentiles)	0.438	0.384	0.381	0.389	0.369
Observations	27825	27825	27825	27825	27825
R-squared	0.114	0.115	0.117	0.118	0.118

Commercial Loans at Bank Level: Asymmetric Effects

Dependent Variable: Change in Commercial Loans					
Explanatory Variables	(1)	(2)	(3)	(4)	(5)
$\sum_{k=0}^{k=4} \alpha_{k}^{+}\left(A R M_{i, t-1} * \Delta F F R_{t-k}^{+}\right)$ standard errors	$\begin{gathered} 0.161 \\ (0.121) \end{gathered}$	$\begin{aligned} & 0.386^{*} \\ & (0.244) \end{aligned}$	$\begin{aligned} & 0.386^{*} \\ & (0.244) \end{aligned}$	$\begin{aligned} & 0.396^{*} \\ & (0.247) \end{aligned}$	$\begin{aligned} & 0.389^{*} \\ & (0.246) \end{aligned}$
$\begin{aligned} & \sum_{k=0}^{k=4} \alpha_{k}^{-}\left(A R M_{i, t-1} * \Delta F F R_{t-k}^{-}\right) \\ & p \text {-values } \end{aligned}$	$\begin{gathered} 0.116 \\ (0.075) \end{gathered}$	$\begin{aligned} & -0.022 \\ & (0.097) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.097) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (0.097) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.097) \end{aligned}$
TIME FE, BANK FE	Y	Y	Y	Y	Y
BANK CONTROLS, DEPENDENT VAR. LAGS	Y	Y	Y	Y	Y
$\begin{aligned} & \sum_{\substack{k=0 \\ k=4 \\ k=4}}^{\sum_{k}^{+,-}\left(\text {BANK CONT. }^{*} * \triangle F F R_{t-k}^{+,-}\right)} \sigma_{k}\left(A R M_{i, t-1} * \text { MACROS }_{t-k}\right) \end{aligned}$	N N	N \mathbf{Y}	Y Y	Y Y	Y Y
BANK LIABILITY CONTROLS	N	N	N	Y	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,--}\left(\text {BANK LIABILITY CONT. } * \Delta F F R_{t-k}^{+,-}\right)$	N	N	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	N	N	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK FED FUNDS LIAB. } * \Delta F F R_{t-k}^{+,-}\right)$	N	N	N	N	Y
Observations	27825	27825	27825	27825	27825
R-squared	0.114	0.116	0.116	0.115	0.116

How does ARM share affect bank lending?-Controlling for loan demand

Identifying the credit supply channel

$$
\begin{gathered}
\log (L)_{i f t}=\delta_{f, t}+\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=\mathbf{4}} \boldsymbol{\alpha}_{\boldsymbol{k}}\left(A \boldsymbol{R} M_{\boldsymbol{i}, \boldsymbol{t}-\mathbf{1}} * \Delta \boldsymbol{F F} \boldsymbol{R}_{\boldsymbol{t}-\boldsymbol{k}}\right)+\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=\mathbf{4}} \sigma_{\boldsymbol{k}}\left(A \boldsymbol{R} \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{t}-\mathbf{1}} * \Delta \text { Macros }\right) \\
+\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=4} \gamma_{\boldsymbol{i}, \boldsymbol{k}}\left(B V_{i, t-1} * \Delta \boldsymbol{F F} \boldsymbol{R}_{\boldsymbol{t}-\boldsymbol{k}}\right)+\theta_{i}+\epsilon_{i, t}
\end{gathered}
$$

- $\log (L)_{i f t} \log$ of new loans from bank i to firm f at the time t,
- $\delta_{f t}$ is firm*time fixed effects: Khwaja and Mian (2008)
- $\boldsymbol{A R M} \boldsymbol{M}_{\boldsymbol{i} \boldsymbol{t}}$ share of ARM loans relative to assets,
- $\triangle F F R$ quarterly change in federal funds rate,
- $B V_{i, t}$ bank balance sheet, variables,
- Macros GDP, inflation, house prices, mortgage demand,
- $\boldsymbol{\theta}_{\boldsymbol{i}}$ bank fixed effects.

Bank-Firm Level (DealScan) Evidence-Controlling for Loan Demand

Dependent Variable: Change in loans of borrower f from bank i					
Explanatory Variables	(1)	(2)	(3)	(4)	(5)
$\sum_{k=0}^{k=4} \alpha_{k}\left(A R M_{i, t-1} * \Delta F F R_{t-k}\right)$ standard errors		$\begin{aligned} & 1.585^{* *} \\ & (0.773) \end{aligned}$	$\begin{aligned} & 1.275 \\ & (0.72) \end{aligned}$	$\begin{aligned} & 1.378^{*} \\ & (0.789) \end{aligned}$	$\begin{aligned} & 1.184^{*} \\ & (0.708) \end{aligned}$
BORROWER*TIME FE	Y	Y	Y	Y	Y
BANK FE, BANK CONTROLS	Y	Y	Y	Y	Y
DEPENDENT VAR. LAGS	Y	Y	Y	Y	Y
$\begin{aligned} & \sum_{\substack{k=0 \\ k=4}}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK CONT. } * \triangle F F R_{t-k}\right) \\ & \sum_{k=0} \sigma_{k}\left(A R M_{i, t-1} * \text { MACROS }_{t-k}\right) \end{aligned}$	N N	N Y	Y Y	Y Y	Y Y
BANK LIABILITY CONTROLS	N	N	N	Y	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK LIABILITY CONT. } * \Delta F F R_{t-k}\right)$	N	N	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	N	N	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK FED FUNDS LIAB. } * \Delta F F R_{t-k}\right)$	N	N	N	N	Y
Impact of 1 SD Increase (0.39) in FFR (\%) (Difference between 75th (0.054) and 25th (0.013) percentiles)	1.396	2.549	2.050	2.216	1.904
Observations	47877	47877	47877	47877	47877
R-squared	0.779	0.78	0.78	0.78	0.78

Bank-Firm Level (DealScan) Evidence- Asymmetric Effects

Dependent Variable: Change in loans of borrower f from bank i			
Explanatory Variables	(1)	(2)	(3)
$\sum_{k=0}^{k=4} \alpha_{k}^{+}\left(A R M_{i, t-1} * \Delta F F R_{t-k}^{+}\right)$	$4.264^{* *}$	$5.01^{* * *}$	4.534***
standard errors	(2.062)	(1.897)	(1.677)
$\sum_{k=0}^{k=4} \alpha_{k}^{-}\left(A R M_{i, t-1} * \Delta F F R_{t-k}^{-}\right)$	-0.867	-0.897	-0.941
standard errors	(1.154)	(1.067)	(1.134)
BORROWER*TIME FE	Y	Y	Y
BANK FE, BANK CONTROLS	Y	Y	Y
DEPENDENT VAR. LAGS	Y	Y	Y
$\begin{aligned} & \sum_{\substack{k=0 \\ k=4}}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK CONT. } * \Delta F F R_{t-k}^{+,-}\right) \\ & \sum_{k=0} \sigma_{k}\left(A R M_{i, t-1} * \text { MACROS }_{t-k}\right) \end{aligned}$	Y Y	Y Y	Y Y
BANK LIABILITY CONTROLS	N	Y	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK LIABILITY CONT. } * \Delta F F R_{t-k}^{+,-}\right)$	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	Y
$\sum_{k=0}^{k=4} \gamma_{k}^{+,-}\left(\text {BANK FED FUNDS LIAB. } * \Delta F F R_{t-k}^{+,-}\right)$	N	N	Y
Observations	47877	47877	47877
R-squared	0.781	0.781	0.781

The Mechanism: Interest Income

Local Projections of interest income and expenses

$$
\begin{aligned}
& \Delta Y_{i, t+d}=\sum_{k=0}^{k=4} \boldsymbol{\alpha}_{k, d}\left(A R M_{i, t-1} * \Delta F F R_{t-k}\right)+\sum_{k=0}^{k=4} \sigma_{k, d}\left(A R M_{i, t-1} * \Delta M a c r o s\right) \\
& +\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{k}=\mathbf{4}} \gamma_{i, k, d}\left(\boldsymbol{B} V_{, i, t-\mathbf{1}} * \Delta \boldsymbol{F F R}_{\boldsymbol{t}-\boldsymbol{k}}\right)+\sum_{k=0}^{k=4} \lambda_{k, \boldsymbol{d}} Y_{i, t-k}+v_{t}+\theta_{i}+\epsilon_{i, t+d}
\end{aligned}
$$

- ARM contracts: long term, adjustments take time
- Jorda (2005)
- $\Delta \boldsymbol{Y}_{i, t+\boldsymbol{d}}$ interest income or expense,
- $A R M_{i, t}$ share of ARM loans relative to assets,
- $\triangle F F R$ quarterly change in federal funds rate,
- $\boldsymbol{B V} V_{i, t}$ bank balance sheet, variables,
- Macros GDP, inflation, house prices, mortgage demand,
- $\boldsymbol{v}_{\boldsymbol{t}}$ and $\boldsymbol{\theta}_{i}$ are time and bank fixed effects.

ARM share and Interest income

75th vs 25th: 1 SD Increase in FFR (\%)
Interest Income on Residential Real Estate Loans

NPL performance

Explanatory Variables	(1)	(2)	(3)
$\sum_{k=0}^{k=4} \alpha_{k}\left(A R M_{i, t-1} * \Delta F F R_{t-k}\right)$ standard errors	$\begin{aligned} & -0.016 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.011) \end{aligned}$
TIME FE	Y	Y	Y
BANK FE	Y	Y	Y
DEPENDENT VAR. LAGS	Y	Y	Y
BANK CONTROLS	Y	Y	Y
$\left.\sum_{k=0}^{k=4} \gamma_{k} \text { (BANK CONT. } * \Delta F F R_{t-k}\right)$	Y	Y	Y
MACRO VARIABLES	-	-	-
$\sum_{k=0}^{k=4} \mu_{k}\left(A R M_{i, t-1} * \text { MACROS }_{t-k}\right)$	Y	Y	Y
BANK LIABILITY CONTROLS	N	Y	Y
$\sum_{k=0}^{k=4} \mu_{k} \text { (BANK LIABILITY CONT. } * \Delta F F R_{t-k} \text {) }$	N	Y	Y
BANK FED FUNDS LIABILITY	N	N	Y
$\sum_{k=0}^{k=4} \delta_{k}\left(\text { BANK FED FUNDS LIAB. } * \Delta F F R_{t-k}\right)$	N	N	Y
Observations	12256	12256	12256
R-squared	0.077	0.079	0.079

Extra exercises/robustness

- Robust to:

■ Smaller/larger banks, trimmed sample, before 2007, hedging controls

- Alternative ARM measures:

■ Average of ARM in the last 8 quarters, ARM/Loans, ARM/ Real Estate Loans

Extra exercises/robustness

- Robust to:

■ Smaller/larger banks, trimmed sample, before 2007, hedging controls

- Alternative ARM measures:

■ Average of ARM in the last 8 quarters, ARM/Loans, ARM/ Real Estate Loans

- Alternative Monetary Policy Shock:

■ High frequency shocks for commercial loans and local projections

Extra exercises/robustness

- Robust to:

■ Smaller/larger banks, trimmed sample, before 2007, hedging controls

- Alternative ARM measures:

■ Average of ARM in the last 8 quarters, ARM/Loans, ARM/ Real Estate Loans

- Alternative Monetary Policy Shock:
- High frequency shocks for commercial loans and local projections
- Alternative Macro Variables: only inflation and GDP growth

Conclusions

- ARMs do not mean stronger MP transmission
- Banking crisis: Bank-side might mitigate and sometimes reverse
- The role of ARMs on MP transmissions:
- The overall effect : Marginal agents; lenders or borrowers
- Time varying: Relative strengths of balance sheets of borrowers and lenders

Conclusions

- ARMs do not mean stronger MP transmission
- Banking crisis: Bank-side might mitigate and sometimes reverse
- The role of ARMs on MP transmissions:
- The overall effect : Marginal agents; lenders or borrowers
- Time varying: Relative strengths of balance sheets of borrowers and lenders

Some considerations

- Mortgages are held by also non-banks
- and some internationals
- Recent banking crisis

