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We investigate drivers of Euro area inflation dynamics using a panel of regional 
Phillips curves and identify long-run inflation expectations by exploiting the cross-
sectional dimension of the data. Our approach simultaneously allows for the inclusion 
of country-specific inflation and unemployment-gaps, as well as time-varying para-
meters. Our preferred panel specification outperforms various aggregate, uni- and 
multivariate unobserved component models in terms of forecast accuracy. We find 
that declining long-run trend inflation expectations and rising inflation persistence 
indicate an altered risk of inflation expectations de-anchoring. Lower trend infla-
tion, and persistently negative unemployment-gaps, a slightly increasing Phillips 
curve slope and the downward pressure of low oil prices mainly explain the low 
inflation rate during the recent years.
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1 Introduction

Headline inflation in the Euro area has been below the medium-term inflation target of

the European Central Bank (ECB) for several years now. The year-on-year change in har-

monized consumer prices has even been negative in early 2015 and again in early 2016.

Understanding why inflation rates have been so low is important for assessing past and

designing future monetary policy and for forecasting inflation. This has been stressed,

among others, by central bankers, see for example the speech given by the vice president

of the ECB at the Jackson Hole Economic Symposium in August 2015 (Constâncio, 2015).

The New-Keynesian Phillips curve (NKPC) delivers a framework for the analysis of infla-

tion dynamics. According to the NKPC, inflation is driven by expectations about future

inflation, marginal costs of production and cost-push shocks including oil prices. Marginal

costs which are difficult to measure are often approximated by an indicator of economic

slack like output gap or the difference between actual unemployment and long-run average

(or structural) unemployment (unemployment-gap). Figure 1 shows (a) headline inflation

rates in the Euro area and in ten member countries of the European Monetary Union

(EMU), (b) two indicators for inflation expectations, (c) unemployment rates, and (d) oil

price changes. As the figure reveals, the possible inflation drivers may all have contributed

to the low inflation rate in recent years. However, the coefficients in estimated Phillips

curves may vary over time (Blanchard et al., 2015).

In the Euro area, estimating relations with time-varying parameters is difficult because

the Euro has only been introduced in 1999 which implies relatively short time-series.

Furthermore, there is evidence for the U.S. that regional Phillips curves are more stable

than an aggregated national Phillips curve (Fitzgerald et al., 2013). In this paper, we

propose a new methodology to estimate a panel of country-specific Phillips curves ex-

ploiting the cross-sectional dimension of inflation data in the Euro area. We specify and

estimate a panel non-linear unobserved component stochastic volatility (UCSV) Phillips

curve model (Cogley et al., 2010; Stella and Stock, 2013) using country-specific data for
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Austria, Belgium, Germany, Ireland, Italy, Finland, France, the Netherlands, Portugal

and Spain (hereafter we refer to this country group as EU10) and allowing for time-

varying parameters. We show that this model has a very good forecasting performance

compared to alternative specifications that have been proposed in the literature. From the

estimated model we infer to what extent actual inflation in the Euro area has been driven

by the various possible inflation drivers: long-run inflation expectations, unemployment-

gaps and cost-push shocks. It turns out that economic slack in the Euro area as indicated

by unemployment-gaps and decreasing oil prices can explain a large share of the infla-

tion dynamics. However, there is also evidence that long-run inflation expectations have

fallen below the ECB’s medium-term inflation target, and that inflation persistence has

increased in the Euro area. Since unemployment-gaps are currently closing in the Euro

area due to the economic upswing and oil prices have been increasing recently our model

predicts that headline inflation will also approach its long-run average value again. But

because inflation persistence is higher than it used to be before the financial crisis conver-

gence to the long-run average takes longer than before. Additionally, long-run inflation

expectations have contributed about 0.5 percentage points to the decline in headline infla-

tion and are still below the medium-term target according to our estimations. Therefore,

inflation may be lower than the inflation target for a prolonged period. Long-run infla-

tion expectations below the inflation target may be an indication of inflation de-anchoring

which would be a major challenge for monetary policy (Blinder, 2000).

Overall, this paper adds to three strands of the literature, namely the literature on the

modelling of inflation dynamics using non-linear UCSV specifications, the literature on

long-run inflation expectations and inflation expectations (de-)anchoring in the Euro area,

and the literature on changes in the inflation dynamics during and after the Great Re-

cession. The paper is organized into eight sections. The second section provides a brief

literature review and explains our contribution to the literature in more detail. The third

section is dedicated to the empirical methodology, including the econometric model, data,

and estimation details. In the fourth section, we present the empirical results of our

benchmark model, including the contributions of the distinct factors to headline inflation
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Figure 1: Euro area inflation dynamics and possible drivers

(a) Headline inflation (yoy) (b) Survey- and market-based inflation expectations

(c) Unemployment rates (d) Oil price inflation

Source: We obtained the series of survey- and market-based inflation expectations from Consensus Eco-
nomics, Thomson Reuters and our own calculations. For the remaining data sources we refer to the data
and estimation section.

rates. The fifth section contains a comparison of our benchmark model to commonly

used non-linear UCSV-models. In the sixth section, we undertake a forecasting exercise,

comparing the forecast performance of our proposed panel structure to that of a variety of

other inflation models. The seventh section includes a robustness analysis, and is followed

by the last section, in which we offer a brief conclusion.

2 Literature Review

Unobserved component models for inflation dynamics have been used in the literature

to decompose actual inflation into a long-run component - called ‘trend inflation’ - and

short-run fluctuations. Chan et al. (2016) for example, estimate a non-linear Phillips

curve for the U.S. and identify both trend inflation and the non-accelerating inflation rate
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of unemployment (NAIRU). They show that their non-linear specification outperforms

various vector autoregressive models as well as linear or partially non-linear unobserved

components models in terms of forecasting accuracy. Garnier et al. (2015) propose a

multivariate Beveridge-Nelson decomposition using various measures of inflation as well

as measures of real economic activity to identify overall trend inflation and show that a

multivariate trend specification improves forecast accuracy over univariate models. We

combine the unobserved components approach with exploiting multivariate data by ex-

tending the non-linear unobserved component stochastic volatility (UCSV) model to panel

data. At least to our knowledge, we are the first to estimate a Euro area Phillips curve

identifying unobserved unemployment-gaps and allowing for time-varying coefficients.

Our estimated panel UCSV model implies model-compatible long-run inflation expecta-

tions. These can be compared to other measures of inflation expectations which have

been constructed using survey data or derived from financial market prices. In several

countries, survey-based inflation expectations measures have persistently predicted infla-

tion rates above or below the actual inflation rates for extended periods. This raises the

question whether these survey-based indicators are reliable measures for long-run infla-

tion expectations, or whether they are systematically biased. Fuhrer et al. (2012) find

that Japanese survey-based inflation expectations measures are persistently above actual

inflation rates. Chan et al. (2017) find systematic time-varying deviations of survey-

based expectations measures from trend inflation for the U.S., UK and Japan. It has

been shown that social and psychological factors might drive the outcomes of survey-

based inflation expectations.1. Market-based inflation expectations can be extracted from

break-even-inflation (EBI hereafter) rates based on inflation-indexed government bonds.

However, EBI are only available for a few countries in the Euro area and are traded at

low volumes, which complicates the estimation of possibly time-varying risk premiums.

Therefore, empirical evidence on the accuracy of inflation expectations anchoring based
1 Van der Klaauw et al. (2008) show that the phrasing of questions in the inflations-expectations survey

of Reuters/University of Michigan Survey of Consumers led to distinct interpretations and increased
dispersions in the answers given. Moreover, participants may provide what they deem to be a socially
desirable answer in favour of the issuer of the questionnaire (Paulhus, 2002).
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on EBI estimates is mixed.2 Moreover, considering break-even inflation rates might not

be a sensible way to estimate long-run inflation expectations due to their high volatility

(Faust and Wright, 2013).

We also contribute to the literature on inflation dynamics during and after the Great Re-

cession and the literature on the missing (dis-)inflation puzzle. For the U.S. case of missing

disinflation Watson (2014) compared inflation predictions from traditional Phillips curve

estimations with actual inflation during the global financial crisis and finds that inflation

did not fall as predicted given the size of the unemployment-gap. He suggests that several

factors could be at work including anchored inflation expectations, changes in inflation

indexation and changes in the slope of the Phillips curve. Applying the non-linear Phillips

curve specification of Matheson and Stavrev (2013) to 23 advanced economies, Blanchard

et al. (2015) find that the slope of the Phillips curve significantly declined in the 1990s but

has remained stable since then. Mertens (2016) shows that U.S. trend inflation declined

in the course of the global financial crises and that at the same time uncertainty about

the trend level increased. As in the U.S., the Euro area experienced inflation rates persis-

tently above the predicted rates between 2008 to 2011. However, in the recovery phase of

the sovereign debt crisis, the puzzle reversed, and headline inflation has been continuously

over-predicted. Using a largescale vector autoregression Bobeica and Jarocinski (2017)

show that the headline inflation dynamics in the Euro area can be mainly explained by

global factors during the global financial crisis and by domestic factors from 2011 to 2014.

Other empirical work by Riggi and Venditti (2015) and Jarociński and Lenza (2016) de-

rives an alternative measure of output gap estimates that match inflation dynamics after

the sovereign debt crisis. In contrast to large-scale empirical approaches, our panel UCSV

model allows a structural interpretation of events, because our specification is based on a

theoretically founded New-Keynesian Phillips Curve relationship.
2Nautz et al. (2017)apply a multiple break-point test to break-even inflation and found that the

inflation expectations in the Euro area were well anchored until late 2011 but have since then significantly
reacted to macroeconomic news. By contrast, Autrup and Grothe (2014)) did not find any evidence of
expectations de-anchoring in the Euro area following a similar approach like Nautz et al. (2017) but using
a smaller time-span and different indicators to control for the liquidity risk premium.
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3 Empirical Methodology

3.1 Baseline model

We estimate a non-linear, bivariate unobserved component model of the unemployment-

based Phillips curve, similar to the models used by Chan et al. (2016) and Stella and

Stock (2013). What differentiates our model from the aforementioned ones is that we

introduce cross-sectional information for the identification of the long-run trend inflation

and common time-varying parameters. Our benchmark model takes on the following form:

πn,t − τπ,EUt = ρπt (πn,t−1 − τπ,EUt−1 ) + λt(un,t − τun,t) + βtπ
oil
t + επn,t

un,t − τun,t = ρun,1(un,t−1 − τun,t−1) + ρun,2(un,t−2 − τun,t−2) + εun,t

τπ,EUt = τπ,EUt−1 + ετ,πt

τun,t = τun,t−1 + ετ,un,t

ρπt = ρπt−1 + ερ,πt

λt = λt−1 + ελt

βt = βt−1 + εβt

(1)

with n = 1, . . . , N number of countries, t = 1, . . . , T points in time. The first line reflects

the Phillips curve relation, written in the inflation-gap formulation - that is the differ-

ence between πn,t, the annualized quarter-on-quarter change of harmonized consumer

prices (HICP), and τπ,EUt , the unobserved trend inflation. In this Phillips curve specifica-

tion, we assume that the current inflation-gap is explained by the past inflation-gap, the

unemployment-gap and by a cost push factor, namely oil price inflation. The second row

specifies the unemployment-gap - that is the deviation of unemployment rates from the

non-accelerating inflation rate of unemployment (NAIRU) modelled as an AR(2) process.

We allow all coefficients in the Phillips curve relation to be time-varying. We chose to do

so because Stella and Stock (2013) have shown that allowing the persistence parameter

to vary over time is empirically important. Additionally, we allow the level of the error

variance to change over time and introduce a common stochastic volatility component

in the inflation-gap equation. The error terms of the model can be summarised in the

following way:
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επn,t ∼ N(0, eht)

ht = ht−1 + εht

εht ∼ N(0, σ2
h)

εun,t ∼ N(0, σ2
n,u)

ερ
π ∼ TN(−ρπt−1, 1− ρπt−1; 0, σ2

ρπ)

ελ ∼ TN(−1− λt−1, 0− λt−1; 0, σ2
λ)

εβ ∼ TN(−βt−1, 1− βt−1; 0, σ2
β)

(2)

As the literature on time-varying coefficients suggests, we assume that the Phillips curve

parameters and the stochastic volatility evolve as driftless random walks (see among oth-

ers Cogley et al. (2010), Stock and Watson (2007) or Chan et al. (2013)). As Chan

et al. (2016) points out, the state specification of driftless random walks introduces excess

uncertainty about the location of states when economic analysis of past developments

allows a reasonable parameter space to be defined ex ante. Therefore, we introduce

truncated distributions for λ, ρπ and ρu. In particular, we assume that the slope, per-

sistence and cost-push shock parameters lie within the intervals (−1, 0), (0, 1) and (0, 1),

respectively. The unemployment-gaps evolve as stationary AR(2) processes, implying that

ρun,1 + ρun,2 < 1, ρun,2 − ρun,1 < 1 and |ρun,2| < 1. Due to interrelations between the latent

variables τπ,EUt , τun,t, λt, ρπt , βt and ht the model shown in equation (1) is non-linear.

3.2 Trend inflation, inflation expectations, and monetary policy

An important feature of our model specification is the decomposition of trend inflation and

country-specific cyclical movements of inflation rates. This is so because changes in the

trend and country-specific cyclical inflation components have different policy implications.

Thus movements in trend inflation relate to changes in the long-run inflation and the

degree of central bank credibility. By contrast, movements in country-specific inflation-

gaps are driven by business cycle conditions, including the country’s monetary policy

stance and exogenous cost-push shocks. While there may be different long-run inflation

trends in the countries of the Euro area, the ECB’s monetary policy is only directed

towards stabilizing Euro area average inflation. The Euro area average time-varying
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inflation trend τπ,EUt is therefore important for monetary policy purposes. Model (1)

implies that, in the long-run (in the absence of unemployment and oil price shocks) Euro

are average inflation converges to τπ,EUt . Therefore, period t’s model-based long-run

inflation expectation for the Euro area as a whole is equal to τπ,EUt . However, it could

be that different countries in the Euro area follow different inflation trends. This is not

captured by our model since country-specific unemployment-gaps πn,t− τπ,EUt have a zero

unconditional mean. Recall that our main purpose is not to estimate country specific

inflation dynamics but to use country-specific information to identify Euro-area average

dynamics, and model (1) is intended to be useful for understanding the overall Euro area

inflation trend.

3.3 Data and Estimation

We use seasonally adjusted data on a monthly frequency for EU10 countries (Austria,

Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal and Spain)

from 1999m01 until 2017m04. As a measure for inflation we use the overall change in har-

monized index of consumer prices (HICP hereafter) and corresponding country weights

provided by the ECB Data Warehouse and Eurostat. The unemployment rate and under-

lying number of unemployed persons and labour force data are taken from Eurostat. We

use the latter two data sets to calculate country-specific weights to construct hypothetical

EU10 unemployment series. For oil prices, we use the Brent crude oil spot price from

the U.S. Energy Information Administration (EIA). We calculate annualized quarter-on-

quarter percentage changes for all series except the unemployment rate. Moreover, we

de-mean the oil price inflation series.

We employ Bayesian estimation techniques to estimate latent states, parameters and

variances. In particular, we use the precision-based MCMC algorithm proposed by Chan

and Strachan (2012). Thus we rewrite our benchmark model, as in Chan et al. (2016),

but include a panel dimension, in which we use the usual matrix notation of time-fixed

effects in panel models (see for example Greene (2014)) to specify the common latent
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states. The full derivation of conditional densities as well as the choice of prior and a

prior sensitivity analysis are outlined in the technical appendix.

4 Results

We discuss our results in three steps. We begin by examining and interpreting the em-

pirical results of our benchmark model in detail, including the inflation trend estimate,

country-specific inflation-gaps, the country-specific NAIRUs and unemployment-gaps, as

well as the estimates of time-varying parameters. Then we compare the key results of our

benchmark model to the corresponding outcomes of various other inflation models that

have recently been presented in the literature. Finally, we carry out a forecasting exercise,

evaluating the forecasting performance of the panel-structured Phillips curve against that

of a number of uni- and multivariate inflation models.

4.1 Empirical results of the baseline model

Trend inflation

The estimates of the trend inflation and the country-specific inflation-gaps are shown in

Figures 2 as well as 3 and are discussed in turn, starting with trend inflation.

The estimates of the trend inflation are not significantly different from 1.9% between 1999

and 2013. This is in line with the ECB’s inflation target of below (but close to) 2%. The

posterior mean of trend inflation declined from 2% in 1999, and stabilized to 1.8% in the

course of the global financial crisis. In mid-2013, the trough of the sovereign debt crisis

(see CEPR Euro Area Business Cycle Dating), trend inflation started to fall significantly

below 1.9%, and continued to decline to 1.5% in mid-2016. It stabilized thereafter. The

upper and lower probability bands have the same quantitative magnitude of the survey-

based and market-based inflation expectation measures in the last few years, amounting

to 1.8% and 1.2%, respectively.
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Figure 2: Trend inflation estimates
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The solid line show the posterior means and the shaded area indicate the 95% probability bands

From a Phillips curve perspective, the anchoring of long-run inflation expectations is

determined by two conditions. Firstly, long-run inflation expectations should equal the

central bank’s desired level of long-run inflation. Secondly, the inflation process should

be predominantly driven by these long-run expectations (along with economic activity

and cost-push shocks) rather than past inflation values. A deviation of either of these

conditions is sufficient to cause a situation of de-anchored long-run inflation expectations.

The former condition is approximated by our results on the trend inflation estimates

in Figure 2. They reflect a continuous and significant deviation of long-run inflation

expectations from the ECB’s desired long-run inflation level from 2013 onwards. The

latter condition relates to the persistence parameter and is discussed later in this section.

Generally, our estimates indicate that persistently low headline inflation between 2013 to

2017 is at least partly driven by a decline in trend inflation and is not purely a cyclical

and/or cost-push shock phenomenon.

Country-specific inflation-gaps

The dynamics of inflation-gap estimates shown in Figure 3 differed substantially across

countries before the start of the global financial crisis, but appear to be homogeneous

11



thereafter. In the pre-crisis period, Ireland, Italy, Portugal and Spain experienced per-

sistently positive inflation-gaps - the average inflation-gap estimates for the pre-crisis

period ranged from 0.64 for Italy to 1.63 for Portugal. By contrast, for Austria, Bel-

gium, Germany, Finland and France, the inflation-gap estimates fluctuated evenly, with

no persistent deviation in either direction. This heterogeneity of the inflation-gap esti-

mates across countries, and especially the persistently positive inflation-gap estimates of

the periphery countries in the pre-crisis episode, are consistent with empirical findings

on causes of macroeconomic imbalances in the EMU. The literature suggests that infla-

tion differentials can be related to an increase of unit labour costs and a rise of current

account imbalances in periphery countries, due to the misallocation of capital across the

EMU that led to persistent real exchange rate misalignments, rather than a catching-up

effect in the tradeable sector (see Coudert et al. (2013) and references therein).

In the post-crisis period, the dynamics of inflation-gap estimates appeared much more

homogeneous in quality and quantity across countries. Apart from substantial spikes in

both directions around 2008 and 2009, inflation-gaps were persistently positive between

2010 to 2013, and peaked in 2012, at roughly 2% for most countries (except for Germany

and France, where it was roughly 1%, and Ireland, where it was roughly 0.5%). Thereafter,

the inflation-gaps turned negative and declined continuously until the end of 2016, with

inflation-gaps around -2% for all countries, except for Austria (around -1%) and Spain

(around -3%). Towards the end of the sample, inflation-gaps started to close again.

Overall, the estimates suggest that headline inflation dynamics across EU10 countries

were subject to amplified but relatively more homogeneous cyclical movements in the

post-crisis period. Moreover, the sharp drop in the inflation-gaps between late 2012 to

2016 indicate that cyclical factors played an important role in explaining the period of

low inflation in EU10 countries.

NAIRU and unemployment-gap estimates

Figure 4 illustrates the posterior means and 95% probability bands of the country-specific

NAIRUs (blue lines and shading) together with the corresponding actual unemployment
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Figure 3: Inflation-gap for EU10 countries in percentage points

Solid lines show the posterior means and shaded areas indicate the 95% probability bands
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rates (black line), the NAWRU estimates of the European Commission (red line). Fig-

ure 5 shows the posterior means and 95% probability bands of the unemployment-gaps

for each country. A striking feature of the actual, cyclical and structural unemployment

rates across the EU10 countries is the continuous heterogeneity in both the levels and the

dynamics.

For Ireland, Portugal, Spain and Italy, the NAIRU estimates increased significantly from

the start of the financial crisis until the peak of the sovereign debt crisis, and declined

thereafter. unemployment-gap estimates (see Figure 5) for this country group were pri-

marily negative for the first part of the sample and turned positive in the course of the

double dip recession, peaking at the height of the sovereign debt crisis and partly declining

thereafter. Thus, prior to the crisis, these countries experienced reduced unemployment

rates, mainly as a cyclical phenomenon, and structural unemployment was relatively sta-

ble. In the course of the double dip recession, however, the substantial increase in the

unemployment rates for Ireland, Portugal, Spain and Italy originated from cyclical effects,

as shown by positive unemployment-gaps of up to 5.7% (Spain), and from significant in-

creases in structural unemployment rates. For example, Portugal’s NAIRU increased by

4.2 percentage points from the beginning of global financial crisis up to the end of 2012.

By contrast, the NAIRU estimates of Austria, Belgium, France, Finland and the Nether-

lands (Figure 4) did not change significantly throughout the sample period. Germany was

an exception, because the German NAIRU estimates declined continuously from 2005 on-

wards. These countries displayed positive unemployment-gaps around 2005 (except for

France) and in the course of the recession (to lesser extent for Germany). While this

group of countries experienced cyclical effects over the sample, estimates indicated no

significant positive long-run effect on structural unemployment.

The asymmetries of the NAIRU and unemployment-gap estimates mirror the structural

differences in the labour markets well, and reflect the severity of the financial and sovereign

debt crisis across countries. Turning to the latter, Anderton et al. (2012) shows that

14



Figure 4: Estimated NAIRU and actual rate of unemployment for EU10 countries in
percent

The solid blue lines show the posterior means, the blue shaded area indicate the 95% probability bands
of NAIRU estimates, the red line indicates the NAWRU estimates of the EC and the black line depicts
actual unemployment
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Figure 5: Estimated unemployment-gap for EU10 countries in percentage points

The solid lines show the posterior means and the shaded areas indicate the 95% probability bands
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elasticity estimates of GDP components to unemployment are substantially higher for

domestic production than for exports. Discontinuity in the construction sector and/or

accumulated competitiveness losses in Spain, Portugal, Ireland and Italy might partially

explain the quantitatively higher increases of the unemployment-gaps from the beginning

of the crisis in these countries, compared to the unemployment-gaps in the remaining

countries. For Austria, Belgium, Germany, France, Finland and the Netherlands, where

declines in exports were the main driver of the decrease in real economic activity, the

effects of the Great Recession on the cyclical and structural unemployment dynamics are

more limited.

The heterogeneous dynamics of our NAIRU estimates are also consistent with empirical

findings on labour market performance, as well as differences in labour market institu-

tions and structures across EU10 countries. Arpaia et al. (2014) report that countries

that experienced a sector-specific boom prior to the crisis (such as the construction sector

boom in Spain, Portugal and Ireland) faced a substantial increase in the degree of mis-

match between the skills demanded by employees and those supplied by the unemployed

on the labour market. The rise in the level of mismatch is to some extent permanent and

therefore contributes to a rise in structural unemployment, because the existing human

capital available from employees in those sectors that were hardly hit by the crisis might

be of limited use for new jobs in expanding sectors.3

Another important determinant of structural unemployment dynamics is labour market

and social benefit reforms. The most pronounced example is the labour market reform

package that Germany introduced in the early 2000s. Consistent with the decline in our

NAIRU estimates for Germany, Dustmann et al. (2014) found that the major reshaping

of German labour market institutions, unemployment benefits and regulation lowered

structural unemployment substantially and facilitated better labour market performance

in the course of the crisis. The declining tendencies in the NAIRU estimates for Ireland,

Italy, Portugal and Spain between 2013 and 2017 may be a result of ongoing labour market
3This effect has been called ’hysteresis’ as described in Ball (2009). The scope of our paper does not

allow us to engage in the recent debate around hysteresis effects on unemployment.
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reforms, as part of structural policy packages supporting the recovery from the sovereign

debt crisis. Overall, our NAIRU estimates are well able to capture recent economic

episodes and developments on labour markets for each country, respectively, and they

also compare well to the NAWRU estimates of the European Commission. Given our

model specification, the altered unemployment-gaps of the periphery countries should

partially translate into declining EU10 headline inflation rates.

Time-varying Phillips curve parameters

Posterior means and 95% probability bands of the persistence coefficient, the Phillips

curve slope and oil price coefficient are shown in Figure 6. Panel a of Figure 6 indicates

that during the global financial crisis, inflation persistence increased significantly from

around 0.65 between 1999 and 2006 to 0.75 from 2008 onwards. This implies that the

degree of backward-lookingness of price setters has increased. This may relate to the

credibility of the monetary policy regime (Erceg and Levin, 2003).

Figure 6: Time varying parameter estimates

(a) coefficient on inflation persistence (b) coefficient on unemployment-gap

(c) coefficient on oil price

The solid lines show the posterior means and the shaded areas indicate the 95% probability bands
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In this sense the magnitude of inflation persistence reflects the agent’s uncertainty about

whether the central bank can accomplish its long-run inflation target. From a monetary

policy perspective, this implies that in addition to a decline in the trend inflation below

the desired long-run level of 1.9% (see the above discussion of trend inflation estimates),

headline inflation has become less anchored to its long-run trend, indicating a rise in un-

certainty from 2013 onwards about whether the ECB will be able to achieve its long-run

inflation target.

The posterior mean of λ indicates that the Phillips curve for the EU10 countries is gener-

ally rather flat, averaging to -0.15 for the entire sample. Thereby, the posterior mean of

the slope parameter reveals that the Phillips curve flattened throughout the period from

early to mid-2000. The implied flattening of the EU10 Phillips curve is in line with the

empirical evidence reported by Blanchard et al. (2015). In late 2013, however, the slope

starts to increase again. Although the decline of λ is not significant, this could potentially

explain missing inflation in the euro area. Riggi and Venditti (2015) also report that the

elasticity of inflation with respect to real economic activity intensified in 2013 and 2014.

The posterior mean of the oil price coefficient (Panel c, Figure 6) gradually increased from

0.0017 to 0.0023.

Decomposition of actual inflation

To show how different cyclical and long-run drivers affect headline inflation rates, we

present the contribution of each of these factors to headline inflation rates across EU10

countries. We base the simulation of contributions on the posterior means of states and

parameters. We also construct a hypothetical EU10 headline inflation rate, together with

the consolidated contributions of the aforementioned inflation components. We do so by

applying the official HICP weights provided by Eurostat to the country-specific headline

inflation rates and corresponding contributions.
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Figure 10: Hypothetical EU10 contributions

Across counties (see Figures 7, 8 and 9) the contribution of trend inflation explains quanti-

tatively the largest share of headline inflation rates. Country-specific contributions assem-

ble the dynamics of inflation and unemployment-gaps discussed in the previous section.

We found that the dynamics of the contribution of unemployment and oil price inflation

across countries were heterogeneous before the global financial crisis, but became more

homogeneous from 2008 onwards. Thus the persistently higher headline inflation rates of

periphery countries in the first half of the sample are partly a result of unemployment

rates below the respective long-run unemployment trends. For example, the average con-

tributions of unemployment from 1999M03 to 2007M12 amounted to 1.4% for Ireland,

0.4% for Italy, 1% for Portugal and 1.2% for Spain.

Low levels of German and Finish headline inflation in the early 2000s can, to some extent,

be related to downward price pressures stemming from positive unemployment-gaps. The

headline inflation rates of the remaining countries did not display persistent contributions

by cyclical drivers from the early to the mid 2000s. Interestingly, the diverging country-

specific contributions of unemployment balance out for the hypothetical EU10 series. This

implies that fluctuations of unemployment-gaps had a limited impact on EU10 headline

inflation in the early to mid 2000s (see Figure 10).
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Figure 11: Actual and counter-factual inflation for the EU10 area

Overall, oil price inflation contributed little to headline inflation rates prior to the global

financial crisis, but its influence has increased since 2008. It was especially important

from 2014 to 2016. The increasing contribution of oil price inflation arose mainly from

the decline of oil price inflation from 2014 onwards, rather than from changes of the

underlying coefficient. Together, fluctuations in unemployment-gaps and oil price infla-

tion contributed considerably to the reduction and the subsequent rise of country-specific

and EU10 headline inflation rates after the start of the global financial crisis. Recently,

the most debated episode of inflation dynamics is the continuous decline of headline in-

flation rates from 2012 to 2016, including periods of mild deflation around 2014. Our

model suggests that persistently low inflation rates are the result, firstly, of slowly closing

unemployment-gaps, together with a slight steepening of the Phillips curve, secondly, of

a strong decrease in the oil price inflation, and, lastly, a drop in trend inflation.

To illustrate the implications of a decline in trend inflation on headline inflation in more

detail, we calculate the counter-factual EU10 headline inflation from 2012m01 to 2017m03

that would have resulted if trend inflation had stayed at 1.9% (see Figure 11). The
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two series indicate that the decline of trend inflation accounts for up to 0.4% of the

headline inflation. By comparison, the average contributions of unemployment and oil

price inflation for the EU10 area between January 2014 and April 2017 were -1% and

-0.7%, respectively.

4.2 Model comparison

To illustrate the benefit of adding a cross-sectional dimension to the UCSV inflation

model, we compare our baseline model to a variety of other aggregate, uni- and multi-

variate UCSV models.

Using EU10 aggregate data from January 1999 to April 2017, we estimate the plain UCSV

Stock and Watson (2007) type model in inflation-gap notation denoted UCSV. That is

a decomposition of inflation into a trend component that follows a random walk and a

cyclical component that is specified as an AR(1), and the variance of residuals and the

AR(1) coefficient is time-varying. Secondly, we estimate the inflation-gap Phillips curve

specification similar to Stella and Stock (2013) or Chan et al. (2013) with aggregate data

and augment the former model by oil price inflation. We abbreviate this model as ag.

PC. Next, we employ a panel structure the two aforementioned models. These models are

named panel UCSV and panel PC, whereby the latter version is our benchmark model.

To simplify the comparison across the aggregate and panel models, we compute the hy-

pothetical EU10 NAIRU using the country-specific posterior mean NAIRUs of the panel

Phillips curve models, and country-specific weights resulting from the unemployment and

labour force data. Estimation details of all models can be found in the technical appendix.

Figure 12 allows us to compare the results of our panel approach to inflation modelling

along three dimensions. We can highlight the difference between panel and aggregate

models, between univariate and multivariate model specification and between Phillips

curve specifications. Inflation trend estimates across models (see Figure 12 Panel a)

display a qualitatively similar dynamic until the start of the global financial crisis, but
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diverge thereafter. Estimates by both UCSV models (USCV and panel UCSV) reveal

a stronger decline of trend inflation (0.8% in 2014) than the remaining models do (1.2%

in 2014).

Figure 12: Key results: comparison across models

(a) Trend inflation estimates (b) Hypothetical EU10 NAIRU estimates

(c) Slope parameter (d) Persistence parameter

(e) Stochastic volatility
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The strong decline of trend inflation estimates in the UCSV models results from omit-

ted additional information, since estimates of the persistence parameter and stochastic

volatility in those models are similar to those of our benchmark panel PC. In the absence

of additional variables that explain the inflation-gaps, the decline of both country-specific

and area-wide headline inflation rates translates mainly into a decline of trend inflation.

Thus, for our estimation exercise, Phillips curve models imply systematically higher trend

inflation estimates, especially for the end of the sample. The estimates from the aggre-

gate version, however, are consistently higher than those of the panel PC model. These

estimates do not fall below 1.9% throughout the sample, and increase to 2.5% around 2012.

The higher trend inflation estimates of the aggregate model are related to systematically

larger magnitude and time variation of the slope and persistence parameters, compared

to the panel Phillips curve models. These larger parameter values are at odds with

the empirical findings reported, for example, by Blanchard et al. (2015) and Eickmeier

and Pijnenburg (2013). It is important to notice that this outcome does not hinge on

distinct estimation set-ups across models, because we apply the same starting values as

well as priors to panel and aggregate models. The different magnitude and time variation

found may instead be a result of limited information in the time dimension of the data

(17 years) for estimating slowly evolving states, which is independent of the number of

observations used (our sample contains 218 observations of monthly data). As pointed out

earlier, we circumvent this problem by adding a cross-sectional dimension to the model.

Thus applying a panel structure results in trend estimates that decline moderately from

2013 onwards, providing much more plausible outcomes compared to survey- and market-

based inflation expectations measures (see Figure 1 Panel b). Across the univariate and

multivariate models, the results of the panel specifications, especially the panel Phillips

curve model including oil prices, are highly plausible in economic terms.
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4.3 Forecasting performance

We now examine how well our panel Phillips curve can forecast inflation since the global

financial crisis. We compare the forecast performance of our baseline model to aggregate

models, as well as panel UCSV and various Phillips curve models. Along similar lines as a

study by Faust and Wright (2013) we also include simple autoregressive and random walk

models. We perform a pseudo-out-of-sample forecast exercise for the time span January

2009 to April 2017. The models included in the forecast exercise are listed below:

• AR(p) with P = 1, 2, ..., 6: autoregressive model for aggregate EU10 inflation

following the specification of Faust and Wright (2013), πt = φ0 +
∑P

p=1 φpπt−p + εt

• ARIMA(p,d,q) with P = 1, 2, D = 0 andQ = 1, 2: autoregressive integrated mov-

ing average model for aggregate EU10 unemployment rate following Montgomery

et al. (1998), ut =
∑P

p=1 φput−p + εt +
∑Q

q=1 θqεt−1

• RW: random walk model for aggregate EU10 inflation πt = πt−1 + εt

• panel PC: panel formulation of inflation-gap Phillips curve including oil price in-

flation with time-varying parameters and stochastic volatility (benchmark model)

• panel PC excl. oil: panel formulation of inflation-gap Phillips curve excluding oil

price inflation with time-varying parameters and stochastic volatility

• ag. PC: aggregate inflation-gap Phillips curve including oil price inflation with

time-varying parameters and stochastic volatility

• ag. PC excl. oil: aggregate inflation-gap Phillips curve excluding oil price inflation

with time-varying parameters and stochastic volatility

• UCSV: unobserved component model with stochastic volatility of Stock and Wat-

son (2007) decomposing inflation into trend and cyclical component using aggregate

EU10 inflation

• UC: unobserved component model for EU10 aggregate unemployment with AR(2)

process for unemployment-gap and a random walk process for trend unemployment.
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• panel UCSV: panel formulation of unobserved component model with stochastic

volatility

• panel PC const. λ: baseline model assuming that λ is constant over time

• panel PC const. ρ: baseline model assuming that ρ is constant over time

• panel PC const. o : baseline model assuming that the oil price parameter is

constant over time

• panel PC const.: baseline model assuming that all parameters are constant over

time

• panel PC excl. sv: baseline model assuming that the variance of the inflation-gap

equation is constant over time

• panel PC cum. oil: baseline model including cumulated oil price inflation (one

quarter)

• panel PC cs ρ: baseline model allowing for country-specific persistence parameters

(time-varying).

The ratios of the root mean squared forecast errors (RMSFE) of each model to the RMSFE

of the AR(1) forecasts for EU10 inflation is shown in Table 1, respectively.4 Overall, our

proposed panel structure for the Phillips curve and also for the UCSV models offers sound

forecasts. For inflation forecasts from horizon 2 onwards, all our panel models outperform

the aggregate uni- and multivariate models, yielding 2% to 24% smaller RMSFEs than a

plain AR(1) forecast. For short-run forecasts, our benchmark model, panel PC, is the

model that performs best. Introducing country-specific persistence in the panel Phillips

curve helps to improve the short-run to mid-run (6-18 horizons) forecasts. Forecasts for 2

to 3 years ahead are predicted best by the UCSV panel model. Interestingly, the univariate

AR and RW models offer better forecast performance than aggregate Phillips curves.

4Forecasting results for EMU unemployment rates can be found in the appendix.
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5 Robustness analysis

To check the sensitivity of our baseline model, we report a series of robustness analyses

in this section. The short time dimension of our sample raises the question of whether

the time variation of structural parameters is a plausible assumption. Therefore, we

re-estimate our benchmark model with distinct assumptions of the parameters’ time vari-

ation, holding each parameter constant in turn, and then all together over time.

In addition, we leave aside the assumption on time-evolving variances of the inflation-gap

residuals. Because cost-push factors might affect the inflation process with some delay, we

also estimate a variant including cumulated oil price inflation (one quarter). Moreover,

the identification of a Phillips curve for the EU10 area does not require the assumption

of a common persistence parameter across countries. Hence, we include a model version

with country-specific persistence.

Figures 13, 14 and 15 show the posterior means of the estimated states of all model

variants and the benchmark specification. To summarize the country-specific NAIRU

estimates, we again construct a hypothetical EU10 NAIRU for all models. All trend in-

flation estimates (Panel a Figure 13) depict qualitatively the same dynamics and differ

to a minor extent quantitatively after the start of the sovereign debt crisis. This implies

that the posterior means of the trend inflation are systematically higher for the model

including cumulative oil prices, and for the model with no time variation of the oil price

parameter. For those models, the posterior means of trend inflation amount to roughly

1.8% in 2016 compared to 1.6% for the benchmark model. For model variants where all

parameters, only λ or only ρπ assumed to be constant, trend inflation is lower at the end

of the sample. The posterior means of the hypothetical EU10 NAIRUs display nearly no

quantitative differences across models.

Turning to Figure 14, it is clear that the posterior means of the parameters display quali-

tatively similar dynamics. Especially the posterior means of the persistence and stochastic
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Figure 13: Benchmark model and robustness specifications: posterior means of trend
inflation and NAIRU

(a) Trend inflation (b) Hypothetical EU10 NAIRU

Figure 14: Benchmark model and robustness specifications: posterior means of parameters

(a) Slope (b) Persistence

(c) Country-specific persistence (d) Oil price parameter

volatility are nearly the same across models. The slope, country-specific persistence and oil

price coefficients reveal some quantitative differences. Restricting the slope to be constant

over time yields lower posterior means of -0.11 and -0.086 as compared to our benchmark

model. Also, the model version with constant variance of the inflation-gap inflation shows
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Figure 15: Benchmark model and robustness specifications: posterior mean of stochastic
volatility

(a) Stochastic volatility

systematically lower evolution of the slope. Moreover, if the persistence parameter is kept

constant, that leads to lower slope parameters up to the start of the global financial

crisis and amplified steepening of the slope thereafter. The posterior mean of our bench-

mark model is around 0.6 between 1999 and 2004. Country-specific persistence estimates,

however, indicate substantial differences from 1999 until 2005, with a higher degree of

persistence especially for Ireland (0.8), Finland (0.7) and the Netherlands (0.68). Over

time, the persistence parameters converge and deviate by roughly ±0.05 from the bench-

mark model’s persistence from 2008 onwards. The most pronounced difference across oil

price parameters is that between the benchmark model using oil price inflation, and the

version of the model using cumulated oil prices. The latter model implies a consistently

lower coefficient of around 0.0003, compared to a coefficient of 0.002 in the benchmark

model, but both series show a slight increase of the oil price parameter after the start of

the global financial crisis. Due to the positive autocorrelation of oil price inflation, the

cumulated oil price series displays altered amplitudes. As expected, this results in a lower

posterior mean of the oil price parameters.

6 Conclusion

Puzzling inflation dynamics in advanced economies have been studied by a growing lit-

erature on unobserved components stochastic volatility models, thus far applied mainly
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to US inflation. A prerequisite for using this type of model is a large sample that ex-

hibits enough data variability on the time dimension. In this paper, we propose a panel

non-linear UCSV Phillips curve model to investigate the inflation dynamics of the Euro

area since the start of the Great Recession. We overcome the difficulty of having only

limited information on the time dimension of the Euro area sample, by exploiting cross-

sectional country-specific data. Our preferred panel structure for the non-linear UCSV

Phillips curve model outperforms plain multivariate model versions in terms of the eco-

nomic plausibility of results and in terms of forecast performance. Aggregate multivariate

UCSV models indicate substantially higher trend inflation estimates and a steeper Phillips

curve for the Euro area. Moreover, univariate UCSV models tend to overestimate the de-

cline of trend inflation since 2013. These results are at odds with previous country-specific

findings reported in the literature. The estimation results of our preferred model suggest

that the reasons underlying the period of persistently low headline inflation in the EU10

area are threefold. Firstly, the EU10 inflation process has become more persistent in

the course of the Great Recession and long-run trend inflation has significantly declined

below 1.9% since 2013. According to our counter-factual analysis, this de-anchoring of

inflation expectations accounted for 0.4% of headline inflation. Secondly, slowly closing

unemployment-gaps, together with a slightly steeper Phillips curve exerted downward

price pressure between 2013 and 2017. Lastly, the substantial fall of oil prices in 2014

amplified the decline of cyclical inflation.
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7 Appendix

In this appendix we provide the details on the choice of priors and starting values as well

as the MCMC-Algorithm for the estimation of the panel UCSV Phillips curve for the

EU10, exploiting the cross-sectional dimension for estimating the latent states. In the

first section we provide information on the model details and the prior choice. In the

second section we outline the MCMC-Algorithm. In the third section we provide details

on further models presented in the paper. The last section reports a prior predictive

analysis.

7.1 Model and priors

Our benchmark model takes on the form:

πn,t − τπ,EUt = ρπt (πn,t−1 − τπ,EUt−1 ) + λt(un,t − τun,t) + βtπ
oil
t + επn,t

(un,t − τun,t) = ρun,1(un,t−1 − τun,t−1) + ρun,2(un,t−2 − τun,t−2) + εun,t

τπ,EUt = τπ,EUt−1 + ετ,πt

τun,t = τun,t−1 + ετ,un,t

ρπt = ρπt−1 + ερ,πt

λt = λt−1 + ελt

βt = βt−1 + εβt

(3)
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with n = 1, . . . , N number of countries, t = 1, . . . , T points in time and

επn,t ∼ N(0, eht)

ht = ht−1 + εht

εht ∼ N(0, σ2
h)

εun,t ∼ N(0, σ2
n,u)

ερ
π ∼ TN(−ρπt−1, 1− ρπt−1; 0, σ2

ρπ)

ελ ∼ TN(−1− λt−1, 0− λt−1; 0, σ2
λ)

εβ ∼ TN(−βt−1, 1− βt−1; 0, σ2
β)

(4)

Moreover, we impose that the unemployment-gaps evolve as a stationary AR(2) process,

restricting ρun,1 + ρun,2 < 1, ρun,2 − ρun,1 < 1 and |ρun,2| < 1. Additionally, we assume that λt,

ρπt and βt lie in the intervals (−1, 0), (0, 1) and (0, 1), respectively. The prior for initial

conditions of the state equations are

τπ,EU1 ∼ N(τπ,EU0 , ω2
τπ)

τun,1 ∼ N(τun,0, ω
2
τu)

ρπ1 ∼ TN(0, 1; ρπ0 , ω
2
ρπ)

λ1 ∼ TN(−1, 0;λ0, ω
2
λ)

β1 ∼ TN(0, 1; β0, ω
2
β)

h1 ∼ TN(h0, ω
2
h)

whereby τπ,EU0 , τun,0, ρπ0 , λ0, β0, h0, ω2
τπ , ω2

τu , ω2
ρπ ,ω2

λ,ω2
β and ω2

h are known constants. The
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specific choice of initial conditions are shown in table 2. For the model parameters we

choose the following priors

σ2
u,n ∼ IG(vu, Su)

σ2
h ∼ IG(vh, Sh)

σ2
τπ ∼ IG(vτπ , Sτπ)

σ2
τu,n ∼ IG(vτu,n, Sτu,n)

σ2
ρπ ∼ IG(vρπ , Sρπ)

σ2
λ ∼ IG(vλ, Sλ)

σ2
β ∼ IG(vβ, Sβ)

IG denotes the inverse-Gamma distribution. The initial values and priors are shown in

table 2. The prior for the degrees of freedom for the parameters is small as v = 10,

implying a large variance and therewith a relatively non-informative prior. The scale

parameters are set in way as to reflect the desired smoothness desired smoothness of tvp

parameters and trends in terms of expected value of the respective variances. For exam-

ple Sτπ = 0.9 with E(στπ) = 0.1 then the prior for E(στπ) implies a relatively smooth

transition of τπ. With a high probability τπ changes between −0.01 and 0.01 from one

period to another. Since the inflation trend is common across countries but the unemploy-

ment trend is country-specific we employ distinct scale parameters for the unemployment

trends, reflecting differences across country-specific NAIRUs due to structural differences

across labour markets.

7.2 MCMC sampling

We adapt the algorithm introduced by Chan et al. (2016) and sequentially draw from

1. p(τπ,EU |π, u, τu, ρπ, λ, β, h, θ, IV )

2. p(τu|π, u, τπ,EU , ρπ, λ, β, h, θ, IV )
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Table 2: Initial conditions and priors

Initial conditions:
τπ0 τu0 h0

OE BG BD ES FN FR IR IT NL PT
1.9 4.2 8.3 5.4 9.6 10.6 9.2 5.4 9.6 4.7 5.8 1
ρπ0 λ0 β0 ρu1,0 ρu2,0 ω2

τπ ω2
τu ω2

h ω2
ρπ ω2

λ ω2
β ω2

u

0.7 −0.4 0.001 1.6 −0.7 0.01 0.1 0.2 0.005 0.005 10−8 0.2
Priors

Sτπ Sτu Sh
OE BG BD ES FN FR IR IT NL PT

0.9 0.9 0.9 0.9 3.6 1.8 0.9 4.5 0.9 1.8 0.9 1.8
Su Sρπ Sλ Sβ For σ2 of τπ, τu, h, ρπ, λ and β we set v
4.5 0.081 0.081 4.5e−6 10

3. p(ρπ|π, u, τπ,EU , τu, λ, β, h, θ, IV )

4. p(λ|π, u, τπ,EU , τu, ρπ, β, h, θ, IV )

5. p(β|π, u, τπ,EU , τu, ρπ, λ, h, θ, IV )

6. p(h|π, u, τπ,EU , τu, ρπ, λ, β, θ, IV )

7. p(θ|π, u, τπ,EU , τu, ρπ, λ, β, h, IV )

with θ = (σu, στπ,EU , στu , σh, σρπ , σλ, σβ, ρ
u) and IV being the initial values for the respec-

tive paramters.

Conditional distribution of τπ,EU

To obtain the conditional distribution of τπ,EU we rewrite the inflation equation in the

following way:

Kππ = µπ +KπX0τ
π,EU + επ, επ ∼ N(0,Ωπ)

(5)
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whereby π is NT × 1, τπ,EU is T × 1, επn,T is NT × 1, Ωπ is diag(σ2
1,1, . . . , σ

2
N,1, . . . , σ

2
N,T )

and

Kπ =

NT ×NT



IN 0 0 0

−ρπ2IN IN 0 0

0 −ρπ2IN IN 0

... . . .
. . . ...

0 0 0 −ρπ2IN


IN is an identity matrix of N ×N . Since |K| = 1, Kπ is invertible for all values of ρπ

µπ =

NT × 1



ρπ1 (π1,0 − τπ,EU) + λ1(u1,1 − τu1,1) + β1π
oil
1

ρπ1 (πN,0 − τπ,EU) + λ1(uN,1 − τuN,1) + β1π
oil
1

λ2(u1,2 − τu1,2) + β2π
oil
2

...

λ2(uN,2 − τuN,2) + β2π
oil
2

...

λT (uN,T − τuN,T ) + βTπ
oil
T



X0 =

NT × T



ι . . . . . . . . . . . . 0

0 ι . . . . . . . . .
...

0 0 ι . . . . . .
...

... . . . . . .
. . . . . .

...

0 . . . . . . . . . . . . ι



ι as a column vector of N × 1 ones. Note that (X ′0X0) is an invertible NT ×NT matrix.

(Mπ|u, τu, ρπ, ρu, λ, β, h, θ) ∼ N(MK−1π µπ +X0τ
πEU , (M ′K

′−1
π ΩπK

−1M) (6)

whereby M = (X0
′
X0)−1X0

′ . Then the prior density of Mπ is given by

log p(Mπ|u, τu, ρπ, ρu, λ, β, h, θ) ∝

−1
2
jh− 1

2
(Mπ −MK−1π µπ − τπ,EU)′(M ′K

′−1
π ΩπK

−1M)−1

(Mπ −MK−1π µπ − τπ,EU)

(7)
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with j being a NT × 1 columns of ones. The state equation of τπ,EU is defined as

Hτπ,EU = απ + ετπ (8)

with

απ =

T × 1



τπ,EU0

0

...

0


H =

T × T



1 0 0 . . . . . . 0

−1 1 0 . . . . . .
...

0 −1 1 . . . . . .
...

0 0 −1 1 . . .
...

... . . . . . . . . .
. . . ...

0 0 . . . . . . −1 1


so that

(τπ,EU |σ2
τ,π) ∼ N(H−1απ, (H

′Ω−1τπH)−1) (9)

with Ωτπ = diag(ω2
τπ , σ

2
τπ , . . . , σ

2
τπ). The prior density of τπ,EU is given by

log p(τπ,EU |σ2
τ,π) ∝

−1
2
(τπ,EU −H−1απ)′H ′Ω−1τπH(τπ,EU −H−1απ)

(10)

Combining (7) and (10)

log p(τπ,EU |Mπ, u, τu, ρπ, λ, β, h, θ) ∝

−1
2
(τπ − τ̂π)′D−1τ,π(τπ − τ̂π)

(11)

with
τ̂π,EU = Dτ,π((M

′
K
′−1
π ΩπK

−1
π M)−1(Mπ −MK−1π µπ) +H ′Ω−1τπαπ)

Dτ,π = ((M
′
K
′−1
π ΩπK

−1
π M)−1 +H ′Ω−1τ H)−1

We sample N(τ̂π,EU , Dτ,π) by using the precision-based-algorithm developed by Chan

and Jeliazkov (2009). This implies that we sample τ̂π,EU by applying the Cholesky fac-

torisation to Dτ,π that is a block-banded matrix so that C ′C = Dτ,π. Then we solve for

τ̂π,EU by backward and forward substitution, sample u ∝ N(0, I), solve for Cx = u and

get a draw of τπ,EU by τπ,EU = τ̂π,EU + x with τπ,EU ∝ N(τ̂π,EU , Dτ,π).
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Conditional distribution of τu

Next we derive the conditional distribution of τu. Therefore, we rewrite the Phillips curve

equation as

z = Λτu + επ, επ ∼ N(0,Ωπ) (12)

with

z =



(π1,1 − τπ,EU1 )− ρπ1,1(π1,0 − τ
π,EU
0 )− λ1u1,1 − β1πoil1

...

(πN,1 − τπ,EU1 )− ρπN,1(πN,0 − τ
π,EU
0 )− λ1uN,1 − β1πoil1

(πN,T − τπ,EUT )− ρπN,T (πN,T−1 − τπ,EUT−1 )− λTuN,T − βTπoilT



Λ = diag(−λ1,1, . . . ,−λN,1, . . . ,−λN,T )

τu = [τu1,1, . . . , τ
u
N,1, . . . , τ

u
N,T ]′

The prior density of π is then given by

log p(π|u, τu, τπ, ρπ, λ, β, h, θ) ∝ (z − Λτu)′Ω−1π (z − Λτu) (13)

The second measurement equation for τu stems from the unemployment-gap formulation.

Kuu = µu +Kuτ
u + εu, εu ∼ N(0,Ωu) (14)

with Ωu = IT ⊗ σ2
u, σ2

u = [ω2
u, σ

2
1,u, . . . , σ

2
N,u]

′ and

44



µu =



ρu1,1(u1,0 − τu1,0) + ρu1,2(u1,−1 − τu1,−1)
...

ρuN,1(uN,0 − τuN,0) + ρuN,2(uN,−1 − τuN,−1)
...

ρu1,2(u1,0 − τu1,0)
...

ρuN,2(uN,0 − τuN,0)
...

0



Ku =



IN 0 . . . . . . . . . 0

−ρu1IN IN . . . . . . . . . . . .

−ρu2IN −ρu1IN IN . . .
. . . ...

0 −ρu2IN −ρu1IN IN . . .
...

... . . . . . . . . .
. . . ...

0 . . . . . . −ρu2IN −ρu1IN IN



whereby ρu1 and ρu2 are column vectors with 1×N .

The prior density of u is then given by

log p(u|τu, θ) ∝

−1
2
(u−K−1u µu − τu)′K ′uΩ−1u Ku(u−K−1u µu − τu)

(15)

The state equation τu takes on the form

τu = H−1αu + ετ
u

t
(16)

with αu = (τu0 , . . . , 0)′ and Ωτu = diag(ω2
τu, σ

2
τu, . . . , σ

2
τu)

log p(τu|σ2
τu) ∝

−1
2
(τu −H−1αu)′H ′Ω−1τuH(τu −H−1αu)

(17)
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Next, combining (13), (15) and (17) yields

log p(τu|π, u, ρπ, τπ, λ, β, h, θ) ∝

−1
2
(z − Λτu)′Ω−1π (z − Λτu)

−1
2
(u−K−1u µu − τu)′K ′uΩ−1u Ku(u−K−1u µu − τu)

−1
2
(τu −H−1αu)′H ′Ω−1τuH(τu −H−1αu)

= −1
2
(τu − τ̂u)′Dτu(τu − τ̂u)

with
(18)

τ̂u = Dτu(Λ′Ω−1π z +K ′uΩ
−1
u Ku(u−K−1u µu) +H ′Ω−1τuαu)

Dτu = (Λ′Ω−1π Λ +K ′uΩ
−1
u Ku +H ′Ω−1τuH)−1

(19)

As before we sample the distribution by using the precision-based algorithm.

Conditional distribution of ρπ

The measurement equation for ρπ is

π∗ + Λu∗ + βtπ
oil
t = XπX0ρ

π + επ (20)

whereby π∗ = π − X0τ
π,EU , Xπ = diag(π∗0, . . . , π

∗
N,T−1), ρπ = [ρπ0 , ρ

π
1 , . . . , ρ

π
T ]′ and u∗ =

u− τu. Then it follows that

(MX−1π π∗ +MX−1π Λu∗) ∼ N(ρπ,M ′X
′−1
π ΩπX

−1
π M) (21)
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log p(MX−1π π∗ +MX−1π Λu∗|τπ, τu, ρπ, λ, β, h, θ) ∝

−1
2
jTh− 1

2
(MX−1π π∗ +MX−1π Λu∗ − ρπ)′

(MX−1π ΩπX
′−1
π M ′)−1

(MX−1π π∗ +MX−1π Λu∗ − ρπ)

(22)

The state equation of ρπ is given by

Hρπ = ερ
π
, ρπ ∼ N(0, H

′−1ΩρπH
−1) (23)

with

log p(ρπ|σ2
ρπ) ∝

−1
2
(ρπ

′
H
′
Ω−1ρπHρ

π) + gρπ ,σ2
ρπ

(24)

Combining (22) and (24) yields

log p(ρπ|π, u, τπ, τu, λ, β, h, θ) ∝

−1
2
jTh− 1

2
(MX−1π π∗ +MX−1π Λu∗ − ρπ)′(MX−1π ΩπX

′−1
π M ′)−1

(MX−1π π∗ +MX−1π Λu∗ − ρπ)

−1
2
(ρπ

′
H
′
Ω−1ρπHρ

π) + gρπ ,σ2
ρπ

∝ −1
2
(ρπ − ρ̂π)′D−1ρπ (ρπ − ρ̂π) + gρπ ,σ2

ρπ

(25)

with

gρπ ,σ2
ρπ

= −
∑T

t=2(Φ(
1−ρπt−1

σ2
ρπ
− Φ(−ρ

π

σ2
ρπ

))
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ρ̂π = Dρπ((M
′
X
′−1
π ΩπX

−1
π M)−1MX−1π (π∗ + Λu∗))

Dρπ = ((M
′
X
′−1
π ΩπX

−1
π M)−1 +H

′
Ω−1ρπH)−1

As it can be seen in EQ (25) the conditional density for ρπ is truncated-normal. We follow

Chan et al. (2016) and apply an independence chain Metropolis-Hastings step, whereby

the candidate draws resulting from the precision-based method are accepted or rejected

by an acceptance-rejection Metropolis-Hastings step.

Conditional distribution of λ

The measurement equation of λ takes on the following form

πλ = XuX0λ+ επ (26)

with Xu = diag(u∗1,0, . . . , u
∗
N,T−1) and πλ = [π∗1,1 − ρπ1π

∗
1,0 − β1π

oil
1 , . . . , π∗N,1 − ρπ1π

∗
N,0 −

β1π
oil
1 , . . . , π∗N,T − ρπTπ∗N,T−1 − βTπoilT ]′. Then it follows that

MX−1u w ∼ N(λ,M ′X
′−1
u ΩπX

−1
u M) (27)

with

log p(MX−1u πλ|τπ, τu, ρπ, λ, β, h, θ) ∝

−1
2
jTh− 1

2
(MX−1u πλ − λ)′(MX−1u ΩπX

′−1
u M ′)−1

(MX−1u πλ − λ)

(28)

The state equation of λ is given by

Hλ = ελt , ε
λ
t ∼ N(0,Ωλ) (29)

with
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log p(λ|σ2
λ) ∝

−1
2
(λ)′H ′Ω−1λ H(λ) + gλ(λ, σ

2
λ)

(30)

Combining (28) and (30) yields

log p(λ|π, u, τπ, τu, ρπ, β, h, θ) ∝

−1
2
(λ− λ̂)′D−1λ (λ− λ̂) + gλ

(31)

with

gλ(λ, σ
2
λ) = −

∑T
t=2(Φ(−λt−1

σλ
− Φ(−1−λ

σλ
))

λ̂ = Dλ((MX−1u ΩπX
′−1
u M ′)−1MX−1u πλ)

Dλ = ((MX−1u ΩπX
′−1
u M ′)−1 +H ′Ω−1λ H)−1

Similarly to the sampling of ρπ, we include an acceptance-rejection Metropolis-Hastings

(ARMH) step additional to the precision-based algorithm as the conditional density is of

non-standard form.

Conditional distribution of β

We apply a similar derivation strategy as before. Then the measurement equation of β

takes on the following form

π∗oil = X0Xoilβ + επ (32)

with Xoil = diag(πoil1 , . . . , πoilT ), β = [β0, β1, . . . , βT ]′ and π∗oil = [π1,1−X0τ
π,EU
1 − ρπ1 (π1,0−

X0τ
π,EU
0 )−λ1u∗1,1, . . . , πN,1−X0τ

π,EU
1 −ρπ1 (πN,0−X0τ

π,EU
0 )−λ1u∗N,1, . . . , πN,T −X0τ

π,EU
T −

ρπT (πN,T−1 −X0τ
π,EU
T − 1)− λTu∗N,T ]′. Then it follows that

log p(X−1oilMd|τπ, τu, ρπ, λ, h, θ) ∝

−1
2
jTh− 1

2
(X−1oilMd− β)′(X

′−1
oil M

′ΩoilMX−1oil )
−1

(X−1oilMd− β)

(33)
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The state equation of β is given by

Hβ = εβt , ε
β
t ∼ N(0,Ωβ) (34)

with

log p(β|σ2
β) ∝

−1
2
(β)′H ′Ω−1β H(β) + gβ(β, σ2

β)
(35)

Combining (33) and (35) yields

log p(β|π, u, τπ, τu, ρπ, β, h, θ) ∝

−1
2
(β − β̂)′D−1β (β − β̂) + gβ

(36)

with

gβ,σ2
β

= −
∑T

t=2(Φ(1−βt−1

σ2
β
− Φ(−β

σ2
β

))

β̂ = Dβ(X
′

oilM
′−1Ω−1β π∗oil)

Dβ = (X
′

oilM
′−1Ω−1β M−1Xoil +H ′Ω−1β H)−1

As before we include an acceptance-rejection Metropolis-Hastings (ARMH) step addi-

tional to the precision-based algorithm as the conditional density is of non-standard form.

Sampling h and θ

For sampling h and the remaining parameters summarized by θ we stick to the algorithm

developed by Chan and Strachan (2012) that is also used in Chan et al. (2016). Thereby,

we draw ρu from a bivariate truncated normal distribution, employing an ARMH step.

Moreover, we draw all remaining variances in separate blocks from inverse-Gamma dis-

tributions. We refer the reader to Chan and Strachan (2012) and Chan et al. (2016) for

further technical details.5

5It should be noted that we do not bound τπ,EU nor τu as in Chan et al. (2016).
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7.3 Specifications of other models

We now report details on the additional unobserved component models presented in the

model comparison and forecasting exercise in the paper. The algorithm underlying these

models are in principle variants of the algorithm presented in the previous section and are

very close to those of Chan et al. (2013) and Chan et al. (2016). For all model variants

that differ with respect to the time variation of parameters we employ the settings as

presented in table 2 and just switch off the respective state equation(s). Similarly, for the

PC variants that do not include oil prices we set the same starting values and priors for

the panel PC model as in table 2 and for the aggregate PC model as described below.

Thus, in the remainder of this section we focus on the univariate unobserved component

models and the aggregate Phillips curve model. Turning first to the univariate models,

the UCSV, panel UCSV and UC model take on the following forms stated below.

For comparability across models we employ similar priors and starting values as in our

benchmark specification. Thus, for panel and aggregate, UCSV models we set τπ0 =

τπ,EU0 = 1.9, ρπ0 = 0.7, h0 = 1, ω2
τ,π = 0.01, ω2

ρ,π = 0.005, ω2
h = 0.2. As before we specify

the model parameters as inverse-Gamma distributions so that for σ2
τπ , σ

2
ρ,πand σ2

h we have

σ2 ∼ IG(v, S). We set vh = vτ = vρ,π = 10, Sh = 1.8, Sτ = 0.9 and Sρ,π = 0.81. The

starting values for the UC model are τu0 = [9, 9], ρu1,0 = 1.6, ρu2,0 = −0.7, ω2
u = 0.2 and

ω2
τu = 0.01. We again assume that σ2

u and σ2
τu follow an inverse-Gamma distribution and

set vτu = vu = 10 and Sτu = 3.6. For the aforementioned models ρπ and ρu stem from

truncated normal distributions as detailed in the benchmark model specification.

The multivariate but aggregate Phillips curve model is specified below. Model parameters

are again specified as inverse-Gamma distributions and we apply the same starting values

as well as priors as in our baseline model (see table 2), except for τu0 and Sτu , which we

set to [9; 9] and 3.6, respectively.
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UCSV panel UCSV

πt − τπt = ρπt (πt−1 − τπt−1) + επt πn,t − τπ,EUt = ρπt (πn,t−1 − τπ,EUt−1 ) + επn,t

τπt = τπt−1 + ετ,πt τπ,EUt = τπ,EUt−1 + ετ,πt

ρπt = ρπt−1 + ερ,πt ρπt = ρπt−1 + ερ,πt

επt ∼ N(0, eht) επt ∼ N(0, eht)

ht = ht−1 + εht ht = ht−1 + εht

εht ∼ N(0, σ2
h) εht ∼ N(0, σ2

h)

ερ
π ∼ TN(−ρπt−1, 1− ρπt−1; 0, σ2

ρπ) ερ
π ∼ TN(−ρπt−1, 1− ρπt−1; 0, σ2

ρπ)

UC

ut − τut = ρu1(ut−1 − τut−1) + ρu2(ut−2 − τut−2) + εut

τut = τut−1 + ετ
u

t

εut ∼ N(0, σ2
u)
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ag. PC

πt − τπt = ρπt (πt−1 − τπ,EUt−1 ) + λt(ut − τut ) + βtπ
oil + επt

(ut − τut ) = ρu1(ut−1 − τut−1) + ρun,2(ut−2 − τut−2) + εut

τπ,EUt = τπ,EUt−1 + ετ,πt

τut = τut−1 + ετ,ut εht ∼ N(0, σ2
h)

ρπt = ρπt−1 + ερ,πt εut ∼ N(0, σ2
u)

λt = λt−1 + ελt ερ
π ∼ TN(−ρπt−1, 1− ρπt−1; 0, σ2

ρπ)

επn,t ∼ N(0, eht) ελ ∼ TN(−1− λt−1, 0− λt−1; 0, σ2
λ)

ht = ht−1 + εht εβ ∼ TN(−βt−1, 1− βt−1; 0, σ2
β)

7.4 Prior predictive analysis

To emphasize the sensibility of our prior settings we perform a prior predictive analysis.

Therefore, we draw from the prior distribution using the starting values and priors shown

in table 2 and simulate with the state equations as to generate artificial data series for

inflation and unemployment. We repeat this exercise 104 times, whereby we compute the

mean, the median, the 16%- and 84%-percentile as well as the variance of each draw of

the artificial series. We can then evaluate the observed data with the cumulative density

functions from the artificial data series. Table 3 presents the prior cdfs evaluate at the

observed data for the distinct features. It can be seen that the baseline model explains

well the observed data.
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Table 3: Prior cdfs for observed data of inflation and unemployment

inflation unemployment
mean 0.50 0.68
median 0.49 0.40
16% 0.50 0.31
84% 0.50 0.94
variance 0.50 0.89

7.5 Forecasting results on EMU unemployment rates

Turning to the evaluation of unemployment forecasts, aggregate Phillips curves and the

UC models offer a substantial improvement in forecasting, compared to the AR and RW

models. Panel model variants, however, again perform best from horizon 12 onwards.

This implies that variations of the panel PC model only change the forecasting perfor-

mance marginally across models (ratios show some variations from the third decimal point

onwards). Using cumulated oil price inflation improves the unemployment forecast for the

medium term. Thus, our proposed panel Phillips curve specification reveals a better fore-

cast accuracy of EU10 inflation and unemployment (from the medium term onwards) than

a variety of other UCSV and univariate time-series models.
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