25 Jahre IWH


Optimizing Policymakers' Loss Functions in Crisis Prediction: Before, Within or After?

Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The expost threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.

27. Februar 2017

Autoren Peter Sarlin Gregor von Schweinitz


Für Wissenschaftler/innen

Für Journalistinnen/en

Stefanie Müller
Stefanie Müller

Für Rückfragen stehe ich Ihnen gerne zur Verfügung.

+49 345 7753-720 Anfrage per E-Mail
Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoWeltoffen Logo