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Optimizing Policymakers’ Loss Functions  

in Crisis Prediction: Before, Within or After? 

Abstract 

Early-warning models most commonly optimize signaling thresholds on crisis proba-

bilities. The ex-post threshold optimization is based upon a loss function accounting for 

preferences between forecast errors, but comes with two crucial drawbacks: unstable 

thresholds in recursive estimations and an in-sample overfit at the expense of out-of-

sample performance. We propose two alternatives for threshold setting: (i) including 

preferences in the estimation itself and (ii) setting thresholds ex-ante according to 

preferences only. We provide simulated and real-world evidence that this simplification 

results in stable thresholds and improves out-of-sample performance. Our solution is not 

restricted to binary-choice models, but directly transferable to the signaling approach 

and all probabilistic early-warning models. 
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davor, währenddessen oder danach? 

Zusammenfassung 

Frühwarnmodelle setzen üblicherweise Schwellenwerte zur Klassifikation von Krisen-

wahrscheinlichkeiten an und optimieren diese. Diese nachgelagerte Schwellenwert-

optimierung basiert auf einer Verlustfunktion, die Präferenzen bezüglich der Art von 

Prognosefehlern mit einbezieht. Sie hat zwei schwerwiegende Nachteile: instabile 

Schwellenwerte in rekursiven Schätzungen sowie eine unnötige Reduktion der Pro-

gnosegüte (out-of-sample). Es werden zwei Alternativen zur Schwellenwertoptimierung 

vorgeschlagen: (i) eine Inklusion von Präferenzen in der Schätzung selbst und (ii) die 

Kalibrierung der Schwellenwerte ausschließlich auf Basis der Präferenzen. Anhand von 

simulierten und realen Datensätzen wird gezeigt, dass diese Vereinfachungen zu 

stabilen Schwellenwerten und verbesserter Prognosegüte führen. Die Vorschläge gelten 

nicht nur für Binary-Choice-Modelle, sondern gleichermaßen für den Signalansatz und 

alle probabilistischen Frühwarnmodelle. 
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1 Introduction
In the wake of the crisis, much research has been devoted to early-warning models for sig-
naling the vulnerability to crisis. This provides means for triggering macroprudential policy,
such as countercyclical capital buffers, and for warnings of growing macroeconomic imbal-
ances, such as the European Commission’s scoreboard. The most common setup of an
early-warning model is to couple a binary-choice method or a univariate indicator with a
preference-weighted loss function for ex-post optimization of signaling thresholds. This paper
shows that ex-post threshold optimization finds signal in noise, which leads to unnecessary
variation in thresholds and produces an in-sample overfit at the expense of out-of-sample
performance. We provide two simpler alternative approaches for threshold setting ex-ante
or within estimations with stable thresholds and improved out-of-sample performance.

The first part of an early-warning model is the estimation method. The two dominating
approaches for this are binary-choice methods and the signaling approach. Binary-choice
analysis (like probit or logit models) was already applied by Frankel & Rose (1996) and Berg
& Pattillo (1999) to exchange-rate pressure, and has more recently been the predominant
approach (Lo Duca & Peltonen 2013, Betz, Oprică, Peltonen & Sarlin 2014). The signaling
approach relates univariate indicators to crises. It descends originally from Kaminsky &
Reinhart (1999), but has also been common in the past years (Alessi & Detken 2011, Knedlik
& von Schweinitz 2012). The second part of an early-warning model concerns the setting
of signaling thresholds based upon loss functions tailored to the preferences of a decision-
maker.1 Demirgüç-Kunt & Detragiache (2000) introduced the notion of a policymakers’
loss-function, where the policymaker mainly faces costs for missing crises (type 1 errors) and
issuing false alarms (type 2 errors). Later, this loss function was extended and transformed
to a usefulness function (Alessi & Detken 2011, Sarlin 2013) that indicates whether and to
what extent the loss of the prediction is smaller than the loss of disregarding the model.
Thus, the two elements of an early-warning model consist of a probability or indicator of
vulnerability and the selection of an optimal threshold with the goal of minimizing a loss
function.

Common practice implies an estimation of a binary-choice model and an ex-post opti-
mization of the threshold within a loss function given predefined preferences between type
1 and type 2 errors. This approach comes with the drawback of the additional second step
of threshold optimization and time-varying thresholds in recursive estimations. In practice,
variation in thresholds is problematic as the rationale for policy implementation needs to
descend from changes in vulnerability rather than changing thresholds. From an econometric
perspective, the reason for threshold variation, given constant policymakers’ preferences, is
due to uncertainty about the true data-generating process (DGP). The process of threshold
optimization, based on in-sample data, does not take this uncertainty into account. Thus,
new observations and increased knowledge about the true DGP lead to changing thresholds.
Further, by not taking uncertainty into account, optimized thresholds produce an in-sample
overfit and (more often than not) an out-of-sample underfit. This paper presents two al-
ternatives to the currently used approach for threshold setting that abstain from threshold

1We do not herein summarize other measures used for assessing model robustness, such as the Receiver
Operating Characteristics curve and the area below it, as they do not explicitly provide guidance on optimal
thresholds.
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optimization. The first alternative is a weighted binary-choice model, where the weights
are given by the above mentioned preferences. Instead of an optimized threshold, the fixed
threshold of 50% transforms probabilistic into binary forecasts. The second alternative uses
the usual binary-choice model, but sets probability thresholds ex-ante according to pref-
erences. It can be proven that this, independently of the DGP, is the long-run optimal
threshold.

This paper postulates that early-warning models based upon binary-choice methods can
and should account for policymakers’ preferences directly as part of the maximum-likelihood
estimation or even ex-ante, rather than applying an ex-post optimization of a loss function
as a second step. This has three benefits. First, it assures stable thresholds for time-varying
models (i.e., equal to 0.5 or equal to preferences, respectively), which is essential for pol-
icy conclusions to descend from variation in vulnerabilities rather than thresholds. Second,
we show that one-step maximization or an ex-ante threshold choice improves out-of-sample
predictive power of the model and reduces the positive bias of in-sample performance on
average.2 Thus, our methods provide better performing early-warning models than the tra-
ditional threshold optimization. Third, it simplifies the process, as the second optimization
step of the traditional approach is left out.

Our proposals can easily be extended to more general settings. As our critique and sug-
gested solution applies to any loss or usefulness function optimization, it also holds for every
early-warning model with this feature. Within-estimation thresholds are directly transfer-
able to methods built on an initial maximum-likelihood estimation of event probabilities,
whereas the ex-ante thresholds apply to any models resulting in probabilities of vulnerabil-
ities. Further, our critique also extends to the signaling approach, which consists solely of
the optimization step. As a weighted estimation is not possible in the context of the sig-
naling approach, we propose it to be replaced altogether by equivalent univariate weighted
binary-choice estimations with thresholds of 0.5 or univariate non-weighted binary-choice
estimations with thresholds equal to preferences. In line with the above discussion, this mit-
igates the problem of overfit due to threshold optimization in the signaling approach, avoids
an often ambiguous assumption on the sign of signaling indicators, and provides standard
statistical properties of the estimator.

We provide two-fold evidence for our claims concerning in-sample and out-of-sample
model performance and threshold stability. First, we run simulations with different DGP to
illustrate the superiority of weighted maximum-likelihood estimation and ex-ante thresholds
vis-à-vis ex-post optimization of thresholds on data with known patterns. Second, we make
use of two real-world cases to illustrate both threshold stability and in-sample versus out-
of-sample performance for the three approaches. For the real-world exercises, we replicate
the early-warning model for currency crises in Berg & Pattillo (1999) and the early-warning
model for systemic financial crises in Lo Duca & Peltonen (2013).

The paper is structured as follows. The next section presents the methods, followed by
a discussion of our experiments on simulated data in the third section and our exercises on
real-world data in the fourth section. The last section concludes.

2This is also in line with the original evidence by El-Shagi, Knedlik & von Schweinitz (2013) and further
evidence by Holopainen & Sarlin (2015), which both show and account for the fact that positive usefulness
can be insignificant. This paper approaches the problem of uncertainty and significance from a different
angle.
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2 Estimating and evaluating early-warning models
This section presents the three methods analyzed in this paper, namely the currently used
approach to derive an early-warning model as well as two alternatives. All three methods
consist of two elements: the estimation of a binary-choice model and the setting of a prob-
ability threshold for the classification into signals. These two elements will be described
together with the current approach in the first subsection, while the following subsections
introduce the two alternatives.

In all cases, the binary event to be explained is a pre-crisis variable C(h). The pre-crisis
variable C(h) is set to one in the h periods before a crisis, and zero in all other, so-called
“tranquil”, periods.3 That is, Cj(h) = 1 signifies that a crisis is to happen in any of the h
periods after observation j ∈ {1, 2, . . . , N}, while Cj(h) = 0 indicates that all h subsequent
periods are classified as tranquil.

2.1 Binary-choice models and ex-post thresholds

Estimation: Binary-choice models (logit or probit models) have been the most important
methods in the early-warning literature (see among many others Frankel & Rose 1996, Ku-
mar, Moorthy & Perraudin 2003, Fuertes & Kalotychou 2007, Davis & Karim 2008). In
a standard binary-choice model, it is assumed that the event Cj(h) is driven by a latent
variable

y∗j = Xjβ + ε

Cj(h) =

{
1 , if y∗j > 0

0 , otherwise
.

Under the assumption ε ∼ N (0, 1), this leads to the probit log-likelihood function

LL(C(h)|β,X) =
N∑
j=1

1Cj(h)=1 ln(Φ(Xjβ)) + 1Cj(h)=0 ln(1− Φ(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of errors, the
likelihood function changes only with respect to a distribution function F , which is logistic
instead of normal.

Non-probabilistic forecasts: The model returns probability forecasts pj = P(y∗j > 0)
for the occurrence of the event. An intuitive threshold for predicted probabilities triggering
counteraction would be 50%. However, crises are (luckily) scarce and (sadly) often very
costly. Both features of crises pose a problem in the early-warning literature, as the estimated
probability of a crisis does not take its costs into account, and seldom exceeds the intuitive
threshold of 50%. For this reason, ex-post threshold optimization is commonly applied to

3In most applications, one would exclude actual crisis periods and possibly even some periods after a
crisis from the estimation altogether, as they may not be tranquil, and should therefore not be used for
early-warning purposes (Bussière & Fratzscher 2006).
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Table 1: A contingency matrix.
Actual class Cj

Pre-crisis period Tranquil period

Predicted class Pj
Signal

Correct call False alarm
True positive (TP) False positive (FP)

No signal
Missed crisis Correct silence

False negative (FN) True negative (TN)

binary-choice models. In order to do that, the estimated event probabilities pj are turned
into (non-probabilistic) binary point predictions Pj by assigning the value one if pj exceeds
a threshold λ ∈ [0, 1] (to be optimized) and zero otherwise. The resulting predictions Pj and
the true pre-crisis variable Cj(h) can be summarized in a 2×2 contingency matrix, see Table
1. It should be noted that all entries of the contingency matrix depend on the threshold λ.
If λ increases, the number of signals decreases, leading to both more true negatives and false
negatives.

Threshold setting: Entries of the contingency matrix can be used to define a large palette
of goodness-of-fit measures. If the threshold λ is optimized ex-post (like it is usually done),
then λ is chosen such that a given goodness-of-fit measure is optimized.

In this paper, we use the measures defined in Sarlin (2013).4 It uses three components
to define these measures. The first component is the unconditional probability of an event
P1 = P(Cj(h) = 1) = (TP + FN)/N and of no event P2 = 1 − P1. The second component
describes prediction errors. Type 1 errors represent the conditional probability of a missed
event in case of an observed event, T1 = P(Pj = 0|Cj = 1) = FN/(FN + TP ), while type 2
errors represent the conditional probability of a falsely predicted event in case of no observed
event, T2 = P(Pj = 1|Cj = 0) = FP/(FP + TN). The third component are policymakers’
preferences that are assigned to individual errors. Falsely predicted events (FP) get a weight
of µ ∈ [0, 1], missed events (FN) a weight of 1− µ. That is, the preferences should capture
the relative costs of individual errors (which include economic and political costs, among
others). As preferences are used to capture relative costs, they are a free parameter that
should in practice be set ex-ante by the policymaker.

From these three components, three equivalent measures are derived. The first is a loss
function calculating the frequency and preference-weighted error rates,

L(µ) = (1− µ)P1T1 + µP2T2.

This provides nothing else than observation-spefic relative costs for type 1 and 2 errors.
A policymaker could achieve a loss of (1− µ)P1 by never issuing a signal and µP2 by always

4There exists a myriad of alternative performance measures. Three other measures have been commonly
applied in the early-warning literature. The noise-to-signal ratio (Kaminsky & Reinhart 1999) has been shown
to lead to corner solutions, resulting in a high share of missed crisis episodes if crises are rare (Demirgüç-Kunt
& Detragiache 2000, El-Shagi et al. 2013). Bussiere & Fratzscher (2008) and Fuertes & Kalotychou (2007)
use a slightly different loss function. The usefulness measure of Alessi & Detken (2011) is conceptually close,
but preferences apply to type 1 and type 2 error rates. This means, that preferences are harder to pin down,
since they do not only depend on the costs of individual false predictions, but also on the frequency of these
errors. Many additional measures are summarized in Wilks (2011).
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issuing a signal. Thus, the second measure of absolute usefulness relates the (negative) loss
to the alternative outcome that could be achieved by disregarding the model altogether:

Ua(µ) = min((1− µ)P1, µP2)− L(µ).

The absolute usefulness may still be hard to interpret. A scaled measure of relative
usefulness relates absolute usefulness to the maximal achievable usefulness,

Ur(µ) =
Ua(µ)

min((1− µ)P1, µP2)
.

It should be clear that the relation between the three measures is strictly monotonic.
When interpreting models, we can hence focus mainly on Ur. This entails in particular that
there is one threshold optimizing the three measures (loss function, absolute and relative
usefulness) simultaneously. We call this the optimized threshold λ∗.

While the optimized threshold λ∗ produces the best in-sample fit given preferences µ, it
has two undesirable properties. First, it is not an analytical function of the preferences, but
also depends on the realization of the data-generating process (DGP). Thus, if new data
are added to the sample, the optimized threshold will most likely change. This is extremely
relevant in practice, where the early-warning model is estimated with real-time data, re-
optimizing the threshold with every new estimation. Second, good in-sample performance is
not necessarily a sign of good out-of-sample performance. In principle, the best out-of-sample
would be produced by the threshold that maximizes usefulness out-of-sample. Optimizing
usefulness based on in-sample data does not take estimation uncertainty into account and
thus follows the implicit assumption that the DGP has been perfectly estimated.5 As the
estimation uncertainty is not taken into account, it can be shown that in-sample usefulness
is biased upwards for optimized thresholds. As this bias is (mostly) due to estimation
uncertainty, it is not likely to persist out-of-sample. In fact, if forecasting errors are not
systematically related to in-sample estimation errors (in which case the model would be
misspecified), the out-of-sample performance of optimized threshold will on average be biased
downward.

The signaling approach: Another common approach is the signaling approach (Kaminsky
& Reinhart 1999). It derives predictions from applying a threshold directly on indicator
values, and proceeds with calculating the contingency matrix and a usefulness measure as
described above. The large appeal it has for policymakers’ is due to the direct interpretabil-
ity of the results and the low data requirements. It is straightforward to show that the
signaling approach can be directly mapped to a univariate binary-choice model and that all
results are identical. Therefore, the results presented in this paper extend to the signaling
approach as well.

2.2 Alternative 1: Thresholds within binary-choice models

In the current approach, a policymaker with preferences µ would transform probability
forecasts into binary signals, optimizing a threshold λ while taking into account her relative

5It is worth noting that this uncertainty may also come from misspecified models or even simple (Excel)
coding errors (Herndon, Ash & Pollin 2014).

5



costs of missing crises and issuing false alarms. These costs, however, can also be accounted
for by weights in the log-likelihood function of the binary-choice model. For the weighted
probit model, the log-likelihood function is the following:

LL(C(h)|β,X,w) =
N∑
j=1

1Cj(h)=1(1− w) ln(Φ(Xjβ)) + 1Cj(h)=0w ln(1− Φ(Xjβ)),

Observation-specific weights have previously been used for other purposes in binary-choice
models. Manski & Lerman (1977) and Logistic Disease Incidence Models and Case-Control
Studies (n.d.) use them to adjust for non-representativeness of an estimation sample in
cases where an average effect for the whole population is of interest. In other disciplines,
(penalized) weights are one possibility to avoid an estimation bias in severely unbalanced
samples with an absolute low number of events (Oommen, Baise & Vogel 2011, Maalouf &
Siddiqi 2014). Other strategies include oversampling and undersampling (King & Zeng 2001),
balancing the sample directly. However, the validity of over- and undersampling hinges
depends on a certain degree of homogeneity within classes, which is harder to assure for a
cross-country study of economic crises. All of these strategies share the same conceptual
goal with our proposal. The main difference is that the imbalance introduced in our sample
is due to the differences in preferences and is thus independent of event frequencies.

For the usefulness measures, individual type 1 and type 2 errors are weighted by (1−µ) and
µ, respectively. In the spirit of the above, this introduces an imbalance into the sample, as
observations have now a different importance. The reason is that type 1 errors can only occur
in event periods, while type 2 errors can only occur in non-event periods. As a consequence,
setting observation weights w = µ accounts for this imbalance. This is possible, because
both the usefulness measure and the log-likelihood are defined on an observation-specific
basis.

This function can be maximized just as easily as the standard binary-choice model. How-
ever, the resulting fitted values should be interpreted as preference-adjusted probabilities.
The appealing feature of the weighted binary-choice model is that optimizing a probability
threshold ex-post is not necessary anymore. Instead, the intuitive threshold of λw = 50% al-
ready accounts for all policy preferences captured in µ. Therefore, the problematic threshold-
optimization step becomes unnecessary. As this holds equally well for multivariate and
univariate cases, it provides a means to replace ex-post threshold optimization in both mul-
tivariate binary-choice and univariate signaling exercises.

An advantage of this approach is the extension to full observation-specific weights. In
a cross-country study, one could argue that the potential loss of an error depends not only
on the type of error, but also on the (time-varying) size of the affected economy (see Sarlin
(2013)). To this end, it may be reasonable to be more concerned about the U.S., and less
so about Finland. Similarly, in a study over a long time, the weight of countries like China
should increase strongly. As this extension goes beyond the relation between type 1 and
type 2 errors, it is not possible to apply in the current approach. A second advantage is that
this extension can be applied to all methods that employ maximum-likelihood estimation.
Yet,weighted binary-choice models come at the disadvantage that different preferences have
a direct impact on estimation results. Thus, when the early-warning model is used with a
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Figure 1: Type 1 and type 2 error shares at different event probabilities.
Note: The total share of errors (FN/N and FP/N) is the area under the curve, divided by the threshold

λ.

set of different preferences, the outcome does not only differ in the contingency matrix, but
also in different parameter estimates.

2.3 Alternative 2: Ex-ante thresholds in binary-choice models

Rather than after or within the binary-choice estimation, our final approach proposes setting
the threshold before estimating the model. In the following, we will prove that the long-
run optimal threshold is λ∞ = µ, independently of the DGP. That is, for infinitely many
observations (when the true DGP is revealed), the optimal threshold can be written as an
analytical function of the preferences. As this long-run optimal threshold is independent of
the DGP, it is also optimal with a limited number of observations.

In the following, we assume that the estimated model is correctly specified.6 This entails
(a) that predicted probabilities p̂(y) approach true probabilities p(y) (and observed frequen-
cies) as N increases (Hosmer & Lemeshow 1980), and (b) that out-of-sample forecasting
errors are not systematically related to in-sample estimation errors. Due to this, we can
work in the following with the true event probabilities p (abstracting from y). Furthermore,
we observe that the probability of a missed event is just equal to the event probability (for
observations with probabilities below the signaling threshold). Similarly, the probability of a
false alarm is equal to one minus the event probability. This relation is shown in Figure 1. To
the left of the threshold λ = 0.3, only missed events can occur (with increasing probability

6Note that this assumption is not only necessary for the derivation of the long-run optimal threshold,
but also needs to be fulfilled by the estimation model itself, if this is to be used in early warning. Strictly
speaking, we also need the assumption that the model provides some explanatory power for events. However,
in the two limiting cases of no relation and perfect explanation of the latent variable, the setting of thresholds
is unnecessary.
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as p increases). For event probabilities p > λ, only false alarms are a concern.
The intuition for setting λ∞ = µ is the following: The share of false negatives and false

positives is just the integral over the respective areas in Figure 1. Let’s assume for the
sake of simplicity, that observations are equally distributed and that therefore every point
on the curve in Figure 1 is equally important. Then the share of false negatives would
be

∫ λ
0
pdp = λ2/2, and the share of false positives would be

∫ 1

λ
(1− p)dp = (1 − λ)2/2.

Minimizing the loss function over λ now returns λ∞ = µ.
In practice, the simplification of equally distributed observations and event probabilities

if certainly not true. So let us now turn to the general case, where event probabilities p have
a density f(p). Note that event probabilities p and their density f(p) both depend on the
DGP of explanatory variables X and events C(h). Therefore, p and their density f(p) are
unknown a priori. Furthermore, while the probabilities p themselves come from the binary-
choice model, the density f(p) can take arbitrary forms. If, for example, the distribution of
X is bimodal, so will be f(p). However, as we will see, knowledge about f(p) is not required
to derive the long-run optimal threshold λ for given preferences µ.

The expected value of false negatives and false positives (depending on λ) is the following:

P(FN(λ)) = T1(λ)P1 =

∫ λ

0

pf(p)dp

P(FP (λ)) = T2(λ)P2 =

∫ 1

λ

(1− p)f(p)dp.

This gives the following loss function to be minimized

L(µ) = L(µ, λ) = (1− µ)

∫ λ

0

pf(p)dp+ µ

∫ 1

λ

(1− p)f(p)dp

Now, we are looking for the threshold λ∞ that minimizes L(µ, λ), i.e. the value λ∞ for
which ∂

∂λ
L(µ, λ) = 0. As a derivation of an integral with respect to its boundary is just the

value of the integrated function at the boundary (multiplied by −1 if the derivative is taken
at the lower boundary), we get

∂

∂λ
L(µ, λ) = (1− µ)λf(λ)− µ(1− λ)f(λ) = λf(λ)− µf(λ).

The unique root solution is λ∞ = µ, minimizing the loss function.7 This proves the long-
run optimality of the ex-ante thresholds. Therefore, we may as well set the λ∞ = µ before
estimating a model and deriving estimated event probabilities.8

7In order to prove that this root indeed provides the minimum of L(µ, λ), it suffices to note that the
second derivative of L(µ, λ) is

∂2

∂λ2
L(µ, λ)|λ=λ∞ = f(λ∞) + (λ∞ − µ)f ′(λ∞) = f(λ∞) ≥ 0.

This follows due to λ∞ = µ and the fact that f is a density, which is by definition greater or equal to zero
for all values.

8For the alternative loss function L(θ) = θT1 + (1 − θ)T2 (Alessi & Detken 2011), the long-run optimal
threshold is nearly as easy to derive. It is λ = (1−θ)P1

θP2+(1−θ)P1
.
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3 Comparing optimal thresholds with simulated data
In this section, we compare the use of ex-post threshold optimization in early-warning models
vis-à-vis direct use of a loss function when optimizing likelihoods, as well as with ex-ante
thresholds. The exercises on simulated data provide strong evidence favoring optimization
of thresholds within binary-choice models and the use of ex-ante thresholds. To illustrate
differences among the approaches, we provide a large number of experiments on a range of
different simulated data.

3.1 Simulation setup

Before testing our approach with real data, we apply it to simulated, simple data. We
present the setup of the baseline scenario here. The more complicated robustness checks are
introduced in a later subsection. In our (simple) simulated data, we use three explanatory
variables X = (X1, X2, X3), a coefficient vector β = (1, 0, 0) and a negative constant of −1.
That is, only X1 contains information on the latent variable y∗ and therefore the observable
event. The constant is chosen such that the probability of an event is slightly below 25% in
range with usual event frequencies in early warning models.

We draw the explanatory variables independently from a standard normal distribution.
Every simulation study is performed with 21 logarithmic-spaced number of observations
between N = 100 and N = 10′000. For every N , we draw X, calculate the event probabil-
ities Φ(Xβ) and draw C(h) from these probabilities (abstracting from index j).9 Drawing
events from a normal distribution means that we simulate data from a probit model. Every
simulated dataset is split evenly into an in-sample and an out-of-sample part.

We then apply the three approaches presented in Section 2 to the in-sample part of the
data, using both probit and logit estimations. That is, for every dataset and policy preference
µ, we construct six different early-warning models. First, a probit with optimized thresholds
λ∗. Second, a probit with fixed thresholds λ∞ = µ. Third, a weighted probit with threshold
λw = 0.5. The fourth, fifth and sixth model are equal to the first three, replacing the probit
estimation by a logit estimation. Logit estimations are a simple way to test if the results are
robust against an admittedly very mild form of misspecification. For all models, we calculate
the in-sample and out-of-sample measures of goodness-of-fit defined in the previous section.
The above steps are performed for different preference settings. To start with, µ = 0.05
and µ = 0.2 give a strong preference to avoiding crises, which accounts for the fact that
missing a crisis may be very costly. µ = 0.5 gives equal weights to both errors and is a
setting, where the weighted models boil down to standard binary-choice estimation (without
threshold optimization). µ = 0.8 gives strong preference to avoiding false alarms. which
accounts for high costs related to external announcements and reputation losses.

Every simulation is performed 1’000 times to get a clear picture of the influence of sam-
pling uncertainty. This allows us to provide a measure for the uncertainty of optimized
thresholds λ∗, as well as the size of the in- and out-of-sample bias of usefulness. Further-
more, we can calculate the probability that the current early-warning model (probit/logit

9This procedure introduces one difference to usual early-warning models: there is no continuous chain
of events in an early warning window of predefined length. However, this difference is irrelevant from an
econometric perspective.
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Figure 2: ROC curve for three simulations with random events (N=50, 500, 5’000) from the
probit estimation.

Note: Type 2 error probability on the x-axis, (1 - type 1 error probability) on the y-axis.

with threshold optimization) is outperformed by our alternatives. In the following (with
the exception of subsection 3.1.1), we will only present results from the baseline specifica-
tion. Many other specifications, as described in the last subsection on robustness, yield both
qualitatively and quantitatively very similar results.

3.2 Randomness of the usefulness

First, let us take a look at a specification (different from above), where events have no relation
to explanatory variables, and where the event probability is 50% in every period. Figure 2
shows the in-sample Receiver Operator Characteristics (ROC) curves from a probit model
for three simulations with different numbers of observations N . An ROC curve shows the
trade-off between type 1 errors and type 2 errors that one has to face at different thresholds.
Usefulness optimization basically chooses the combination of type 1 and 2 errors on the black
curve that maximizes the weighted distance to the red diagonal (for a discussion of the ROC
curve see Drehmann & Juselius (2014)).

Ideally, the distance (and therefore absolute usefulness) should be zero, because there is
no relation between explanatory variables X and events C(h) in this specification. However,
in practice this is not the case. For small N , β is estimated to produce an optimal fit.
This means that the ROC curve will be above the diagonal on average (otherwise, the fit
would be worse than for coefficients equal to zero). With less observations there is more
uncertainty concerning true coefficients, resulting in a stronger upward bias of the ROC.10

If now, in a second step, the weighted distance of the ROC curve is maximized in order to
maximize usefulness, this produces an overfit. Essentially, threshold optimization chooses
the best possible outcome (in-sample) instead of the most likely possible outcome.

10El-Shagi et al. (2013) therefore argue that – in order to judge the quality of an early-warning model – it
is paramount to obtain a distribution of the usefulness under the null hypothesis of no relation between X
and C(h), instead of only a measure of usefulness itself.
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Figure 3: Mean λ∗ with 90% confidence bands, for different values of µ.

The distance of the ROC curve to the diagonal, and therefore usefulness of the random
model, decreases strongly with increasing N . This happens because, as N increases, uncer-
tainty on true DGP decreases, bringing the ROC curve closer to the diagonal and bringing
usefulness closer towards its true level of zero.

3.3 Variation and limit of optimized thresholds

Opposite to the previous subsection, we analyze the simple baseline specification with a
true relation between the exogenous variables and the observed events (but without any
additional properties that might negatively influence the estimation of the probit). Figure 3
presents the mean λ∗ together with confidence bands from 1’000 replications for the different
policy preferences µ and different number of observations N .

As the true DGP is always identical, all uncertainty on λ∗ comes from the estimation
uncertainty, which depends mainly on the number of observations. Therefore, the width of
the confidence bands of λ∗ does not depend on preferences µ and decreases with N . However,
even for a large number of observations there remains considerable uncertainty. Therefore, in
a recursive real-time context one can expect changing thresholds as new information about
the true data-generating process becomes available.11 As expected and in line with the
mathematical proof of our second alternative, λ∗ approaches µ as N increases. Figure 3
depicts another frequently found result: the difference between probit and logit estimations
is marginal. If anything, the optimized threshold from logit estimations seems to approach
µ faster – even though the logit model is misspecified.

11The result of Figure 3 is only indicative, as it is based on independent draws with identical numbers of
observations. In a real-time context, one would only add a small number of observations (the cross-sectional
dimension) to a much larger dataset, leading to a smaller change in optimized thresholds.
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Figure 4: Mean relative usefulness of the three probit models.
Note: In-sample usefulness is higher than out-of-sample usefulness for every number of observations N .

The black line at zero signifies the boundary below which it is optimal not to use the model.

3.4 Comparison of out-of-sample performance

Differences in usefulness among different models are probably the most important aspect for
practitioners, as this is the main quality measure of an early-warning model.

Under the assumption that data are created by a constant DGP, and that this process
can be captured by the estimated model, in-sample and out-of-sample usefulness should
both converge to the true long-run usefulness of that process. As in-sample models are
fitted to the data, we would expect that in-sample usefulness is higher for a lower number
of observations and drops towards a boundary value. This view is confirmed by Figure 4 for
probit models (and for logit models Figure A.1 in the appendix).12 These figures show the
mean relative usefulness from simulations with different numbers of observations for the three

12An alternative way to look at this would be the difference of relative usefulness between the benchmark
model and our two proposals. This is shown in Figures A.2 and A.3 in the Appendix.
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different approaches. In-sample results are presented in the first row of plots, out-of-sample
results in the second row, differentiating for different preferences µ. Contrary to in-sample
usefulness, the out-of-sample usefulness improves as N goes to infinity. The reason is the
slow uncovering of the true DGP, which strengthens the inference from in- to out-of-sample
data.

In addition to these general results holding for all estimation methods, we see that the
usefulness (in- and out-of-sample) of our proposals is on average closer to their true value
than those of the benchmark models. Concerning in-sample usefulness (which is higher
than the true value from the DGP), this seems to be bad at first sight. However, it has
to be acknowledged that one of the main reasons for calculating in-sample usefulness is an
evaluation of the quality of the early-warning model. If this quality is biased upwards, it
induces an overstated sense of confidence, trust and security. This bias is much lower for our
proposals, where it only stems from estimation uncertainty. However, what really matters
in the early-warning practice is out-of-sample usefulness. Here, our proposals perform on
average better. This holds especially for the weighted logit model for all µ 6= 0.5: the results
of the (misspecified) weighted logit are nearly identical to the ones of the weighted probit,
while out-of-sample usefulness of the standard logit (with or without threshold maximization)
is far below the one for threshold probit, when µ is different from 0.5. That is, in addition
to being on average better out-of-sample than their peers, weighted methods may provide
robustness against method misspecification.

Even though out-of-sample usefulness of our proposals is on average better than that
of threshold optimization, this difference is not statistically significant in most cases. By
construction, our proposals produce nearly always worse in-sample usefulness than their
threshold peer. Out-of-sample, our proposals outperform the benchmark only in slightly
more than 50% of the cases, see Figure 5. The exception to this is, again, the misspec-
ified weighted logit model (Figure A.4 in the appendix). Why do our alternatives often
outperform the benchmark model only in slightly more than 50% of the cases, while still
providing (on average) sizable higher out-of-sample relative usefulness? The reason for this
is the uncertainty in the DGP that makes threshold optimization prone to variation. As the
innovations in- and out-of-sample are uncorrelated, there is a (roughly) 50% chance that the
out-of-sample innovations would push the optimized threshold in a similar direction as the
in-sample innovations. Therefore, there is a 50% chance that thresholds optimized based on
in-sample data perform (slightly) better for out-of-sample data than the fixed thresholds of
our two alternatives. However, in the other 50% the performance losses are much higher.

3.5 Robustness to other specifications

Above, we reported only results for a very simple specification where no estimation problems
are to be expected. This may change if the complexity of the DGP is increased. For example,
it could well be that estimation suffers disproportionately from slightly more complicated
weighted models. Therefore, we test many different specifications. The only unchanged
properties in these robustness tests are that we keep the number of exogenous variables at
three, and that we keep the constant at −1. The following adjustments were tested:

1. Correlation of 50% among all exogenous variables. Multicollinearity is known to be a
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Figure 5: Probability that the weighted model has a higher usefulness than the threshold
model (probit estimations).

bigger problem for binary-choice models than it is for OLS. Thus, it could potentially
affect the weighted estimations strongly. The relevance in practice is evident, where an
early warning model with non-correlated exogenous variables is virtually non-existent.

2. Autocorrelation of all exogenous variables with lag coefficients 0.7 (first lag) and −0.3
(second lag) in order to allow for cyclical behavior of X. Autocorrelation is highly
relevant for macroeconomic variables that are usually used in early-warning models.

3. Combination of correlated and autocorrelated exogenous variables.

4. Testing omitted variables, excluding X1 in the baseline model. As X2 and X3 do not
provide any information on y∗, the results should be very similar to a purely random
model as presented in subsection 3.2.

5. Testing omitted variables, excluding X1 in the correlated model. Now, X1 is correlated
with X2 and X3. Thus, y∗ given X2 andd X3 is not completely random. We would
therefore expect results close to the correlated model.

6. Having multiple exogenous variables explaining the latent variable. We change the
coefficient vector to β = (1, 1, 0), allowing X2 to influence y∗ as well.

7. Varying the explained variance of the model. We use different coefficient vectors (β1 =
(10, 0, 0), β2 = (0.1, 0, 0), β3 = (10, 10, 0), β4 = (0.1, 0.1, 0), β5 = (10, 0.1, 0)) that
increase or decrease the influence of the exogenous variables. As they are drawn from
a standard normal distribution, this changes both the total variance of y∗ as well as
the share of (potentially) explained variance in y∗.
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8. Changing the DGP of exogenous variables. It may be that different underlying dis-
tributions of X influence both the inference on y∗ and the speed with wich optimized
thresholds approach the long-run optimal threshold. We test this by changing the
distribution of X1, X2, X3 to a Cauchy distribution and a shifted exponential distribu-
tion. Both distributions are calibrated to have mean zero, and are tested with different
standard deviations.

In short, the results are nearly identical for different models. That is, our baseline results
are representative for the full battery of different model specifications (with the exception of
test number 4).13

4 Real-world evidence of threshold setting
This section provides empirical evidence on threshold setting based upon policymakers’ pref-
erences for two real-world cases. We again test the three different approaches for deriving
early-warning models and thresholds: (i) binary-choice models with optimized thresholds,
(ii) weighted binary-choice models, and (iii) binary-choice models with pre-set thresholds.
To compare both threshold stability and in-sample versus out-of-sample performance in a
real-world setting, we replicate the early-warning model for currency crises by Berg & Pat-
tillo (1999) and the early-warning model for systemic financial crises by Lo Duca & Peltonen
(2013). This provides empirical evidence for a probit model and a logit model, and follows
the cases used to introduce the usefulness measure in Sarlin (2013).

4.1 Currency crisis model by Berg and Pattillo (1999)

This section reproduces the probit model for currency crises by Berg & Pattillo (1999) (re-
ferred to as BP). The dataset consists of five monthly indicators for 23 emerging market
economies from 1986:1 to 1996:12 with a total of 2,916 country-month observations: foreign
reserve loss, export loss, real exchange-rate overvaluation relative to trend, current account
deficit relative to GDP, and short-term debt to reserves. To control for cross-country differ-
ences, each indicator is transformed into its country-specific percentile distribution. In order
to date crises, we use the exchange market pressure index defined by BP. A crisis occurs if
the weighted average of monthly percentage currency depreciation and monthly percentage
declines in reserves exceeds its mean by more than three standard deviations. Using the
resulting crisis occurrences, we define an observation to be in a vulnerable state, or pre-crisis
period, if it experienced a crisis within the following 24 months. This subsection provides
two types of evidence: (i) in-sample versus out-of-sample performance for a one-off split
of the data, and (ii) in-sample versus out-of-sample performance and threshold stability in
recursive real-time estimations.

To replicate the set-up in BP, the data is divided in an estimation sample for in-sample
fitting from 1986:1 to 1995:4, and a test dataset for out-of-sample analysis from 1995:5 to
1996:12 (around 15% of the sample). Despite the short period of the test sample, nearly 25%
of all events happen in that window. Large differences in unconditional event probabilities

13Detailed results can be obtained from the authors on request.
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Figure 6: In-sample and out-of-sample analysis with the BP model.
Note: The models are estimated on in-sample data and applied to out-of-sample data.
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point to higher uncertainty on the true DGP. This in turn should be especially problematic
for the benchmark approach with optimized thresholds. To test the relative performance
of before, within and after threshold setting, we test in-sample and out-of-sample perfor-
mance for µ ranging between 0 and 1. That is, we test over all potential preferences that a
policymaker may have.

To start with, we estimate models with all three approaches using data separated into
in-sample and out-of-sample datasets. Figure 6 shows in-sample and out-of-sample perfor-
mance for all the approaches over different µ values. Even though in-sample usefulness is
by definition always equal to or above 0 (for optimized thresholds), the figure shows that µ
values above 0.3 exhibit out-of-sample a negative usefulness, which is intuitive and in line
with previous results in the early-warning literature. Across different threshold setting ap-
proaches, the figure provides evidence of generally similar performance on in-sample data,
with a slight outperformance of ex-post threshold optimization. The higher usefulness of
optimized thresholds may be explained by increased uncertainty and therefore “room to op-
timize”. The picture reverses for out-of-sample usefulness. Out-of-sample performance is
most often inferior for the probit model with ex-post threshold optimization. This can be
also seen from table 2, which displays the mean gain (or loss) in relative usefulness from
using one of our two proposed approaches over different ranges of preferences. The mean
gain is calculated for µ between 0 and different maxima, to account for the fact that some
extreme preferences would in practice not be chosen. In addition, we always exclude those
preferences where the in-sample estimation results in negative usefulness, as in these cases
the model should be disregarded altogether. For µ ≤ 0.3, the probit model with ex-ante
threshold has on average an out-of-sample relative usefulness which is 4.5 percentage points
above the benchmark model, while the weighted probit provides a gain in relative usefulness
of 3.8 percentage points. Given that relative usefulness hovers around 25% for the BP model,
these are sizable gains.

Max µ Probit, set threshold Weighted probit
0.200 0.030 0.017
0.300 0.045 0.038
0.400 0.046 0.024
0.500 -0.041 -0.057
0.600 -0.103 -0.115
0.700 -0.140 -0.150
0.800 -0.130 -0.139

Table 2: Mean difference of relative usefulness compared to the benchmark for the BP model.
Note: In every row, we report the difference of relative usefulness for µ below the maximum µ, excluding

those observations where the in-sample usefulness was negative.

The second line of evidence that we put forward with the BP model is based upon
recursive real-time estimations. With the same division of data, we explore the performance
of the three approaches when applying them recursively. Even though the original authors
do not perform this type of a test, this mimics a real-time setting when applying early-
warning models. The recursive analysis implies that we only use data up to each specific
month to derive model output for the same quarter in question, which is done from 1995:5
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Figure 7: Recursive real-time analysis with the BP model.
Note: The models are estimated in a recursive manner by using only information available up to each

month between 1995:5 and 1996:12. We display absolute instead of relative usefulness due to the negative
parts for µ = 0.5 and µ = 0.8.

to 1996:12. We can see in Figure 7 that the three approaches generally perform equally
well. However, the alternative approaches tend to outperform the benchmark in regions of
positive usefulness where the model provides added value.

Another aspect that recursive models allow to explicitly illustrate is the stability of thresh-
olds λ∗. While ex-ante and within estimation setting of thresholds assure stability by defini-
tion, a major source of uncertainty (and potentially confusion) is the variability of thresholds
in ex-post optimization. Herein, we illustrate this by showing threshold variation for the BP
model with ex-post optimization. Figure 8 shows a heatmap coloring of thresholds λ∗ for
different preferences µ. For a given µ value (horizontal row), a model with stable thresholds
would also have a constant color over time. We can observe that this is not the case. For
instance, for µ = 0.2 the thresholds seem to vary between 18% and 24%. This illustration
points out potential problems for policy.

This real-world example further strengthens our simulation results. Compared to the
simulations, the mismatch between in- and out-of-sample fit may be further enhanced by
the possibility that the importance of explanatory variables changes over time. Although
this may not necessarily be due to a change in the DGP, it will make an estimation of
the true process harder with limited number of observations. The resulting uncertainty,
in turn, influences threshold optimization more negatively than the alternative approaches.
In practice, it is very likely that different crises have slightly different origins.14 That is,
the importance of explanatory variables will most definitely change over time. Therefore,
our example with real data provides evidence that early-warning models relying on within
or ex-ante setting of thresholds are more robust to these changes than their traditional

14If different crises had identical origins, this would indicate strongly that economists, policymakers and
market participants would be unable to learn from the past.
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counterparts. It is central to note that beyond evidence on out-of-sample outperformance,
the most valuable merits of the two approaches relate to the stability of thresholds. In the
vein of real-world cases, this is a key concern for policy as variations in thresholds due to
uncertainty might be challenging to communicate. How could a policymaker be convinced
to implement policies in a country with unchanged macro-financial conditions only due to a
shift in “optimal” λ? Signals should depend on changes in the vulnerability indicators, not
on unjustified (random) variation in thresholds. Accordingly, thresholds equaling 0.5 or µ
allow by definition for constant thresholds.

4.2 Model of systemic financial crises by Lo Duca and Peltonen
(2013)

This section reproduces the logit model of systemic financial crises of Lo Duca & Peltonen
(2013) (referred to as LDP). The dataset includes quarterly data for 28 countries, 18 emerging
market and 10 advanced economies, for the period 1990Q1 to 2010Q4 (a total of 1,729
observations). The crisis definition uses a Financial Stress Index (FSI) of five components:
the spread of the 3-month interbank rate over the 3-month government bill rate, quarterly
equity returns, equity index volatility, exchange-rate volatility, and volatility of the yield on
the 3-month government bill. Following LDP, a crisis is defined to occur if the FSI of an
economy exceeds its country-specific 90th percentile. That threshold on the FSI defines 10%
of the quarters to be systemic events. It is derived such that the events have led, on average,
to negative consequences for the real economy. To enable policy actions for avoiding a further
build-up of vulnerabilities, the focus is on identifying pre-crisis periods with a forecast horizon
of two years. The dataset also consists of 14 macro-financial indicators that proxy for a large
variety of sources of vulnerability, such as asset price developments, asset valuations, credit
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Figure 9: In-sample and out-of-sample analysis with the LDP model.
Note: The models are estimated on in-sample data and applied to out-of-sample data.

developments and leverage, as well as traditional macroeconomic measures, such as GDP
growth and current account imbalances. The variables are used both on a domestic and a
global level, where the latter is an average of data for the Euro area, Japan, UK and US.
The dataset is divided into two partitions: the in-sample data (1990Q4 to 2005Q1) and
out-of-sample data (2005Q2 to 2009Q2). As in the previous subsection, we analyze both the
one-off split and the performance in a recursive real-time exercise.

In the vein of the above, we estimate models with all three approaches using in-sample
and out-of-sample data. Figure 9 shows in-sample and out-of-sample performance for all
the approaches over different µ values. This evidence again confirms that while in-sample
performance is similar in nature, out-of-sample performance is most often inferior for logit
models with ex-post threshold optimization. As in the case of the currency crisis model of
BP, Table 3 presents the average gain over different preference ranges for our two alternative
approaches. Again, the gains for reasonable ranges of µ are positive and even more sizable
than in the BP case. For µ below 0.4, the weighted logit provides on average nearly 10
percentage points higher relative usefulness out-of-sample than the benchmark approach
with optimized thresholds. This evidence even holds for higher preference settings that
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Figure 10: Recursive real-time analysis with the LDP model.
Note: The models are estimated in a recursive manner by using only information available up to each
quarter between 2005Q2 and 2007Q2. We display absolute instead of relative usefulness due to the

negative parts for µ = 0.5 and µ = 0.8.

would usually not be employed in practice.

Max µ Logit, set threshold Weighted logit
0.200 0.059 0.126
0.300 0.033 0.106
0.400 0.024 0.093
0.500 0.023 0.078
0.600 0.015 0.062
0.700 -0.003 0.042
0.800 -0.001 0.057

Table 3: Mean difference of relative usefulness compared to the benchmark for the LDP
model.
Note: In every row, we report the difference of relative usefulness for µ below the maximum µ, excluding

those observations where the in-sample usefulness was negative.

Again, a second line of evidence relies on real-time analysis by exploring the performance
of different approaches when applying them in recursively during the recent global financial
crisis. As performed by the original authors, and common in the literature, the recursive
tests run from 2005Q2 to 2007Q2. We can see in Figure 10 that the weighted models perform
better than both the ex-post and ex-ante threshold setting (out of which ex-ante is, in turn,
slightly better). In line with Figure 9, we can also see that µ values above 0.5 exhibit a
negative usefulness, for which the difference among approaches is smaller.

The instability of thresholds is again assessed by showing the extent to which they vary
for the LDP model with ex-post optimization. Figure 11 shows a similar heatmap coloring
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manner by using only information available up to each quarter between 2005Q2 and 2009Q2. Even though
LDP only uses up to 2007Q2, we extend the analysis to the longest available time-series.

of thresholds λ for different preferences µ as for the BP case. We can observe that thresholds
exhibit even more variation for the LDP model than for the BP model. Looking again at
µ = 0.2, the thresholds vary between values of below 13% and close to 28%. This points to
significant uncertainty that would have serious implications in policy use.

5 Conclusion
The traditional approach for deriving early-warning models relies on a separate ex-post
threshold optimization step. We show in this paper that this ex-post optimization of thresh-
olds is prone to suffer from estimation uncertainty. Accordingly, we show that the traditional
approach is exposed to identifying positive usefulness even in random data. Rather than
looking for signals in noise, this paper provides simple means for noise reduction.

We propose two alternative approaches for threshold setting in early-warning models,
where preferences for forecast errors are accounted for by setting thresholds within (weighted
models with λw = 0.5) or even before (λ∞ = µ). To subsume, we find that these two propos-
als outperform their traditional counterpart in three ways. First, we eliminate unjustified
(random) variation in thresholds and allow hence all signals to descend purely from variation
in probabilities. This supports policy implementation and communication based upon these
models. Second, out-of-sample performance can on average be improved by our approaches,
while the bias on in-sample usefulness is reduced. Third, our proposals are simpler.

We think therefore that weighted models and ex-ante threshold setting are preferable
approaches. Out of these two approaches, the ex-ante threshold setting is deemed to be
more appealing for two reasons: (i) it is simpler than the weighted approach, and (ii) it
does not require models (including coefficients, their standard errors, etc) to be re-estimated
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for different preference parameters. However, it comes at the disadvantage that accounting
for observation-specific benefits and costs is not possible, to which weighted models can be
easily extended.

As our results hold not only for the simple binary-choice models tested in this paper,
but for every early-warning model using threshold optimization (including the much-used
signaling approach), we strongly recommend to include policymakers’ preferences as weights
in the estimated likelihood or specifying thresholds ex-ante, and thus to move away from
threshold optimization in general.
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Figure A.1: Mean relative usefulness of the three (misspecified) logit models.
Note: In-sample usefulness is higher than out-of-sample usefulness for every number of observations N .

The black line at zero signifies the boundary below which it is optimal not to use the model.
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Figure A.2: Mean difference of relative usefulness of alternative probit methods to probit
estimation with optimized λ.

Note: The estimation with optimized λ outperforms the two alternative approaches in-sample (negative
difference), but provides lower usefulness out-of-sample (positive difference).
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Figure A.3: Mean difference of relative usefulness of alternative logit methods to logit esti-
mation with optimized λ.

Note: The estimation with optimized λ outperforms the two alternative approaches in-sample (negative
difference), but provides lower usefulness out-of-sample (positive difference).
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Figure A.4: Probability that the weighted model has a higher usefulness than the threshold
model (logit estimations).
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