Strapped for Cash: The Role of Financial Constraints for Innovating Firms and Aggregate Growth

Esther Ann Bøler, Imperial College & CEPR Andreas Moxnes, BI Norwegian School of Business & CEPR Karen Helene Ulltveit-Moe, Uni Oslo & CEPR

TSI Conference, March 18 2025

A technological revolution

U.S. Investment rates, 1977 to 2017

Source: intaninvest.net.

- Developed economies now invest more in intangible than tangible capital (Corrado and Hulten, 2010)
- Bank debt important in the life-cycle of firms
 - Dominant source of financing for EU SMEs (ECB, 2019)
- Intangible-intensive firms credit constrained?
 - Our focus: Collateral hard to secure on the basis of intangible assets
 - Particularly salient for young firms

Strapped for cash?

Notes: Bank debt share is bank debt relative to sales. Share of intangibles is intangible assets relative to fixed assets. The figure shows a binned scatterplot after residualizing the x and y variables on NACE 2-digit fixed effects. Data from 2010.

- How do collateral constraints affect firms' financing and performance?
- What are the overall implications for growth and misallocation?
- Closing the gap between the firm-level effects of financial constraints and the aggregate effects of financial constraints and misallocation

This paper

- Micro:
 - Exploit a 2015 reform allowing firms to use *patents* as collateral
 - DiD comparing exposed firms to unexposed firms before/after reform
- Macro: Aggregate impact on labor productivity
 - Develop parsimonious quantitative framework. Two forces:
 - Capital deepening: Aggregate capital / labor ratio \uparrow
 - Misallocation: Direction & magnitude depends on distribution of initial credit constraints
 - Use DiD estimates for model quantification

Our contribution

- Exploit clean quasi-natural experiment to assess the impact of collateral constraints
 - Much of the previous literature is either theoretical (Long, 2002, Amable et al., 2010, Moll, 2014) or not able to address causality (Hall, 2019)
- Analyze aggregate effects in parsimonious quantitative framework
 - Avoid TFPR estimation commonly used in the misallocation literature
 - Allows for any distribution of initial & change in constraints.
 - Simple mapping between reduced form and model.
- Cover the universe of active firms, including young and small firms
 - Many previous papers have used data on publicly listed firms (Brown et al., 2009, Chava et al, 2017, Mann, 2018)
 - Unlisted firms for aggregate outcomes (Caglio et al, 2022)
- Address complementarity bank debt \iff equity funding

- Theoretical framework
- Data
- Micro: Reform details, testable predictions, empirical strategy, results
- Macro: Quantification, results
- Conclusions

Theoretical framework

Model, part I

- Simple monopolistic competition framework, in the spirit of Hsieh & Klenow (2009)
- Production function for firm i

$$Y_i = A_i K_i^{\alpha_s} L_i^{1-\alpha_s}$$

Demand:

- CES across firms within a sector s
- Price index P_s & elasticity of substitution σ
- Cobb-Douglas across sector with expenditure share θ_s Details

- The firm:
 - Maximizes profits
 - Takes wages w and interest rate r as given

Credit constraints

- *Credit constraints*: The total capital that the firm has is less than the amount it would want at the interest rate that it is currently paying (Banerjee & Duflo, 2014)
- Capital distortion $\tau_i \ge 1$. Firms will invest in capital until its MRPK equals $\tau_i R \bullet Graph$
- For constrained firms with τ_i > 1, compared to optimal situation with no financial constraints:
 - *MRPK*_i is higher than optimal
 - Capital stock is lower than optimal

Factor demand

• Profits for firm *i*

$$\pi_i = p_i Y_i - w L_i - \tau_i r K_i$$

• Firm i's optimal price is a constant markup over marginal costs

$$p_i = \kappa \frac{\sigma}{\sigma - 1} \frac{(\tau_i r)^{\alpha} w^{1 - \alpha}}{A_i}$$

• Firm *i*'s demand for labor and capital:

$$K_{i} = D_{s} \frac{\alpha}{r} A_{i}^{\sigma-1} \tau_{i}^{\alpha(1-\sigma)-1}$$
$$L_{i} = D_{s} \frac{1-\alpha}{w} A_{i}^{\sigma-1} \tau_{i}^{\alpha(1-\sigma)}$$

where D_s is an industry-specific demand shifter

• These expressions guide our empirical analysis

Empirics

- Administrative firm register data from Statistics Norway
 - Covers all firms in all sectors
 - Key variables: firm age, number of employees

• Administrative firm-level accounting data from Statistics Norway

- All joint-stock firms in all sectors
- Key variables: Sales, employment, tangible/intangible capital
- Intangible capital: R&D, patents, goodwill. Deferred taxes dropped

Data II

- Bank data from the Norwegian Tax Authority (Skatteetaten)
 - Yearly data on all loans given by financial institutions registered in Norway (firm-bank-year-loan)
 - Key variables: value of loan, interest paid
- Patent data from the Norwegian Patent Office
 - key variables: patent applications, status of patent
- Shareholder data by firm
 - # shareholders, and issue of new stock
- · Link all datasets with a unique firm identifier
- Main analysis 2010-2018

Reduced form

- The use of collateral is regulated by law. Bill passed on 23 January 2015 to allow firms to use patents as collateral
- The reform was introduced to alleviate financial constraints for firms with primarily intangible rather than tangible assets
- Not part of a bigger tax reform. Effective as of 1st July 2015
- Norway late in the game: 38% of U.S. patenting firms had previously pledged patents as collateral in 2013 (Mann, 2018)

Testable hypotheses

- · For constrained firms, reform leads to
 - Increase in capital stock (tangible or intangible)
 - More bank borrowing
- If borrowing ↑ but no change in firm outcomes, suggests that firm is substituting from other forms of financing to bank debt.

Empirics: Methodology

Diff-in-diff: Compare firms affected by the reform to other firms pre/post 2015:

$$y_{it} = \alpha_i + \beta P_i \times Post_t + \gamma X_{i0} \times \delta_t + \delta_{st} + \varepsilon_{it},$$

- $P_i = 1$ if firm *i* has ≥ 1 patent applications between 2010 and 2015
- α_i firm FE, δ_{st} industry-year FE (NACE 2-digit)
- $Post_t = 1$ if t > 2015
- X_{i0}: Log employment, log capital (fixed assets), share of intangibles, dummy for having received public funding
 - Measured at baseline and interacted with year dummies

Outcome variables

- Measures of firm performance:
 - Log employment
 - Capital
 - Log sales
 - MRPK (operating income divided by total fixed assets)
 - Intangible capital
- Measures of credit:
 - Bank loan dummy
 - Bank debt
 - Total bank debt relative to sales
 - Short term relative to total debt
 - Number of bank connections
 - Interest rate, $i_{it} = \frac{Interest_{it}}{(Debt_{it}+Debt_{it-1})/2}$
- Equity funding
 - new stocks
 - new investors

Results: Firm performance

	Log empl (1)	Log sales (2)	Capital (3)	MRPK (4)	Intangible capital (5)
$Post_t \times Pat_i$	0.089***	0.022	0.223**	-0.246***	1.133***
	(0.030)	(0.041)	(0.103)	(0.080)	(0.286)
Firm FE	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	OLS	PPML	OLS	PPML
Observations	763,161	748,284	753,992	739,488	118,605

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Capital refers to fixed assets. MRPK refers to operating income divided by total fixed assets. Controls include baseline levels of: log employment, log capital, share of intangibles and a dummy for public funding, all interacted with year dummies.

Pre-trends

	Bank loan (1)	Bank debt (2)	<u>Bank Debt</u> Total Sales (3)	<u>Short Debt</u> Total Debt (4)	No of Banks (5)	Interest rate (6)
$Post_t \times Pat_i$	0.049***	0.594***	0.014**	-0.023**	0.146***	0.001
	(0.019)	(0.175)	(0.006)	(0.010)	(0.041)	(0.003)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	PPML	OLS	OLS	OLS	OLS
Observations	763,161	501,278	723,632	758,311	763,161	336,497

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

- More capital & employment & intangible investments
- More bank borrowing
- Interest rate unchanged
- Suggests that on average, treated firms are indeed credit constrained

Robustness & further results

- Heterogeneity: young firms <a>Link
- Continuous treatment, granted patents
- Pre-trends for credit
 Link
- Placebo exercise on pre-sample Link
- Equity funding <a>Link
- Credit constraint measures from the Financial Conduct Authority (Finanstilsynet)

Quantitative framework

Quantitative framework

- Aggregate effects of relaxing the credit friction.
- Quantify change in aggregate output per worker. Mechanisms:
 - Capital deepening (aggregate K/L up)
 - Misallocation
- To answer this question, we need to go back to the model
- Consider initial \longrightarrow counterfactual equilibrium with relative change $\hat{x} = x'/x$
 - "Exact hat algebra" approach by Dekle et al (2018)
- Baseline: Infinitely elastic capital supply, exogenous interest rate R

Comparative statics

Results:

• Change in firm-level capital stock

$$\hat{K}_i = \hat{\tau}_i^{\alpha_s(1-\sigma)-1} \hat{P}_s^{\sigma-1}$$

• Change in sector-level price index:

$$\hat{P}_{s} = \left[\sum_{i=1}^{M_{s}} \omega_{i} \hat{\tau}_{i}^{\alpha_{s}(1-\sigma)}\right]^{1/(1-\sigma)}$$

where ω_{si} is initial market shares, $\omega_{si} = sales_{si} / \sum_{i \in s} sales_{si}$

- $P_s \downarrow$ if one or more firms in the sector experiences reduced credit constraints
- Firms with $\hat{\tau}_i = 1$ will contract as they face more competition from firms with reduced credit constraints

Aggregate outcomes

• Follow Hsieh & Klenow (2009) and express industry output:

$$Y_{s} = \mathit{TFP_{s}K_{s}^{lpha_{s}}L_{s}^{1-lpha_{s}}}$$

• Change in industry labor productivity:

$$\frac{\hat{Y}_{s}}{\hat{L}_{s}} = T\hat{F}P_{s}\left(\frac{\hat{K}_{s}}{\hat{L}_{s}}\right)^{\alpha_{s}} = \frac{1}{\hat{P}_{s}}$$

- Two distinct sources of industry (and aggregate) labor productivity growth:
 - industry capital intensity increases $(K_s/L_s \text{ goes up})$
 - potentially reduced misallocation (if *TFP_s* goes up)

Two propositions

Proposition

The relative change in the credit friction is given by

$$\hat{ au}_i = \left(rac{\hat{\kappa}_i}{\hat{P}_s^{\sigma-1}}
ight)^{1/[lpha_s(1-\sigma)-1]}$$

 \longrightarrow DiD estimate of within-industry capital growth identifies capital friction

Proposition

Consider a sector production function $Y_s = TFP_s K_s^{\alpha_s} L_s^{1-\alpha_s}$. The relative change in industry-level TFP is

$$T\hat{F}P_{s} = \frac{\left[\sum_{i=1}^{M_{s}} \omega_{i}\hat{\tau}_{i}^{\alpha_{s}(1-\sigma)}\right]^{1/(\sigma-1)}}{\left[\sum_{i=1}^{M_{s}} \zeta_{i}\hat{\tau}_{i}^{-1}\right]^{\alpha_{s}}},$$

where ζ_i are initial capital shares, $\zeta_i = K_i / \sum_{i=1}^{M_s} K_j$.

Misallocation

The figure shows $T\hat{F}P_s$ for different values of ζ_1 . $\sigma = 5$, $\alpha = 0.5$, $\hat{\tau}_1 = 0.5$, $\hat{\tau}_2 = 1$, $\omega_1 = \omega_2 = 0.5$.

Quantification

Data requirements:

β	DiD estimate, In <i>Capital_i</i>	0.22	
α_s	Capital share	0.30 (mean)	1 - (wage costs)/(total costs)
σ	Elasticity of substitution	4	Broda & Weinstein (2006)
ω_{si}	Sales shares	Firm level	Our data, 2014
ζi	Capital shares	Firm level	Our data, 2014

• No need to calculate TFPR (used to infer frictions in misallocation literature)

Results: Reallocation

- Estimate $\hat{\tau}_i = 0.89$, implicit capital cost $\downarrow 11\%$ for a treated firm, relative to a control firm
- No clear relationship between initial market share and subsequent growth
 - Both small and large firms affected by reform
- 6.7 \longrightarrow 7.0% of aggregate employment \approx 4000 workers reallocated from control to treated firms.

Results: Aggregate productivity growth

- Up to 3% increase in industry output per worker.
- Gains concentrated in sectors where treated firms have big market share.

Results: Misallocation

- - 1 Capital deepening (aggregate K/L up)
 - 2 Ambigous effect on misallocation
 - Frictions reduced for firms with high initial τ: TÊP_s ↑
 - Frictions reduced for firms with low initial τ : $T\hat{F}P_s \downarrow$
 - Model tells us that we need both ω_i and ζ_i to sort this out.
- We find channel 1 is quantitatively dominant
 - Growth in Y_s/L_s order of magnitude larger than growth in TFP_s
 - TÊP_s negative for some industries
- TFP losses from misallocation smaller than typical estimates in the literature (e.g., Midrigan and Xu, 2014)

Results: Aggregate impact

- Aggregate gains from relaxing the credit constraint:
 - According to the model: Increase in output per worker $1/\hat{P} = 1/\prod_{s} \hat{P}_{s}^{\beta_{s}} = 1.006.$
 - Equivalent to 0.62 billion USD
 - Same magnitude as total subsidies given by the main governmental agency for innovation and industrial policy in Norway (2021).
- Back-of-the-envelope calculation:
 - The total implicit cost of the collateral constraint is $RK(\tau \tau') = RK\tau'(1/\hat{\tau} 1)$, where K is the initial aggregate capital stock for treated firms
 - Use the median bank interest rate in our sample R = 0.07, assume $\tau'=1$ (credit friction is completely eliminated)
 - Total implicit cost = 0.73 billion USD
- Results from extension with fixed K: •Link

Summary and conclusions

- The reform had a significant impact on firm's bank borrowing:
 - More likely to get bank loans, increased number of bank connections
 - No impact on the interest rate
- The reform had a significant impact on the real economy:
 - Increased capital stock, employment and intangibles
- Quantitative model suggests large improvements in output mostly due to capital deepening
 - Misallocation plays a smaller role
- Together, findings consistent with credit (collateral) constraints
 - Policies to increase the pledgeability of patents alleviate financial constraints on innovation

Thank you!

Model details

• Aggregate output is produced using a Cobb-Douglas production function:

$$Y=\prod_{s=1}^{S}Y_{s}^{\theta_{s}},$$

where Y_s is output from industry s and $\sum_{s=1}^{S} \theta_s = 1$

 Sectoral output is itself a CES aggregate of M_s firms producing differentiated products:

$$Y_{s} = \left(\sum_{i=1}^{M_{s}} Y_{i}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$

where σ is the elasticity of substitution across firms and Y_i is output of firm *i*

Testable hypotheses

▶ Back

Pre-trends for bank dummy

Back

Results: Credit and Young firms

	Bank loan (1)	Bank debt (2)	<u>Bank Debt</u> Total Sales (3)	<u>Short Debt</u> Total Debt (4)	No of Banks (5)	Interest rate (6)
$Post_t \times P_i$	0.043**	0.634***	0.010	-0.009	0.145***	0.001
	(0.020)	(0.180)	(0.06)	(0.010)	(0.044)	(0.003)
$\textit{Post}_t \times \textit{P}_i \times \textit{Young}_i$	0.063	-0.858	0.032*	-0.108^{***}	0.046	0.002
	(0.052)	(0.643)	(0.019)	(0.032)	(0.111)	(0.007)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes	Yes
Young*year FE	Yes	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	PPML	OLS	OLS	OLS	OLS
Observations	763,161	501,278	723,632	758,311	763,161	336,497

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

 $Young_i = 1$ if a firm is 6 years or younger in 2015 • Back

Results: Firm Performance and Young Firms

	Log empl (1)	Log sales (2)	Capital (3)	MRPK (4)	Intangible capital (5)
$Post_t \times Pat_i$	0.066**	-0.003	0.207**	-0.179**	1.202***
	(0.032)	(0.042)	(0.105)	(0.077)	(0.296)
$\textit{Post}_t imes \textit{Pat}_i imes \textit{Young}_i$	0.216**	0.287**	0.426***	-0.543	-0.784*
	(0.085)	(0.140)	(0.131)	(0.341)	(0.442)
Firm FE	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes
Young*year FE	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	OLS	PPML	OLS	PPML
Observations	763,161	748,284	753,992	739,488	118,605

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Capital refers to fixed assets. MRPK refers to operating income divided by total fixed assets. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummise.

 $Young_i = 1$ if a firm is 6 years or younger in 2015 \bigcirc Back

Results: Credit - Constrained firms

	Bank loan (1)	Bank debt (2)	<u>Bank Debt</u> Total Sales (3)	<u>Short Debt</u> Total Debt (4)	No of Banks (5)	Interest rate (6)
$Post_t \times Pat_i$	0.051	0.486**	0.020*	-0.015	0.122*	0.002
	(0.031)	(0.206)	(0.012)	(0.018)	(0.065)	(0.004)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	PPML	OLS	OLS	OLS	OLS
Observations	190,068	131,070	170,052	188,379	190,068	93,603

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

Results: Firm Performance - Constrained firms

	Log empl (1)	Log sales (2)	Capital (3)	MRPK (4)	Intangible capital (5)
$Post_t \times Pat_i$	0.128**	0.086	0.318**	-0.451***	0.991***
	(0.054)	(0.081)	(0.162)	(0.188)	(0.381)
Firm FE	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	OLS	PPML	OLS	PPML
Observations	190,068	182,611	187,172	177,322	31,239

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

Falsification test

	Bank Ioan (1)	Bank debt (2)	<u>Bank Debt</u> Total Sales (3)	Capital (4)	MRPK (5)	Intangible capital (6)
Post2010×Pat10;	-0.007	0.112	0.005	-0.003	-0.126	-1.003**
	(0.016)	(0.194)	(0.005)	(0.084)	(0.087)	(0.409)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	PPML	OLS	PPML	OLS	PPML
Observations	854,061	593,554	803,368	849,584	827,646	146,601

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

Placebo on pre-sample period 2005-2015. • Back

- Is equity a substitute or complement to debt?
- Outcome variables:
 - New stocks: net issue dummy = 1 if firm issues new stock.
 - Number of sharesholders

Results: Equity funding

	Equity issue dummy (1)	Equity issue dummy (2)	Log shareholders (3)	Log shareholders (4)
$Post_t \times Pat_i$	-0.024**	-0.047***	-0.052	-0.078**
	(0.010)	(0.011)	(0.035)	(0.037)
$\textit{Post}_t \times \textit{Pat}_i \times \textit{Young}_i$		0.116***		0.203*
		(0.037)		(0.109)
Firm FE	Yes	Yes	Yes	Yes
Controls*year	Yes	Yes	Yes	Yes
Industry*year FE	Yes	Yes	Yes	Yes
Young firm*year FE	No	Yes	No	Yes
Observations	763,161	763,161	665,403	665,403

Standard errors in parenthesis are clustered on firm. * p < 0.1, ** p < 0.05, *** p < 0.01. Controls include baseline levels of: log employment, log fixed assets, share of intangibles and a dummy for public funding, all interacted with year dummies.

Complementarities: Removing collateral constraint leads to issue of new stock. • Back

How different are firms with intangibles?

	Firms w Mean	/ intangibles Median	Firms w _/ Mean	o intangibles/ Median
Age	8.48	8	9.54	10
Employees	23.39	2	14.03	5
Bank connections	0.63	0	0.91	1
Bank debt dummy	0.31	0	0.50	1
Ν	1	1,696	6	5,353

How different are firms with patents?

	Firms w Mean	/ patents Median	Firms w Mean	/o patents Median
Age	10.10	11	9.37	10
Employees	125.73	15	14.25	4
Bank connections	1.13	1	0.86	1
Bank debt dummy	0.52	1	0.47	0
Ν	835		76,214	

Patenting firms and bank debt

	Bank loan dummy	Bank loan dummy	Bank loan dummy	Bank loan dummy
	(1)	(2)	(3)	(4)
Pi	0.065**	-0.043	-0.041	0.017
	(0.030)	(0.031)	(0.031)	(0.034)
Log emp		0.079***	0.073***	0.063***
		(0.009)	(0.009)	(0.007)
Age			0.005***	0.003***
			(0.001)	(0.001)
Industry FE	No	No	No	Yes
Observations	84,063	84,063	84,063	84,063

Data from 2013. Standard errors in parenthesis are clustered on industry. * p < 0.1, ** p < 0.05, *** p < 0.01.

Model: Friction vs constraint

Extension: Endogenous R

- Replace open economy assumption with endogenous *R* and fixed *K*.
- Some sectors lose as K is reallocated to other sectors.
- Aggregate growth is only due to misallocation
 - across firms
 - 2 across sectors Back