Net zero emissions and price signalling

M. P. Ribeiro¹

¹Geneva Graduate Institute; CompNet

TSI Concluding conference Berlin, 18th March 2025

Funded by the European Union

Outline

NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized facts
- Model
- Calibration
- Technical change bias

Box 1: CompNet-OECD collaboration

- Box 2: CompNet-OeNB collaboration
- Next steps; references

CompNet

1 NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized facts
- Model
- Calibration
- Technical change bias
- Conclusion
- 2 Box 1: CompNet-OECD collaboration
- 3 Box 2: CompNet-OeNB collaboration

4 Next steps; references

Marcelo, Piemonte Ribeiro

Motivation

NZE and price signaling

Motivation

- Research question
- Sample
- Stylized facts
- Model
- Calibration
- Technical change bias
- Box 1: CompNet-OECD collaboration
- Box 2: CompNet-OeNB collaboration
- Next steps; references

- To reach NZE by 2050, the EU needs to cut fossil fuel use from 73% to 20%, but current policies only achieve 60% (ECB 2024)
- Social costs of carbon estimates (Hambel, Van den Bremer, and Van Der Ploeg, 2024) of 182\$/t Co2 are more than 3x the world average carbon prices (WB, 2024)
- Price signals are crucial for accelerating the green transition
 - via energy efficiency (André et al., 2023)
 - by directing technology towards green innovation (technical change literature, see review Hémous and Olsen, 2021)

This paper

NZE and price signaling

Motivation

Research question

Sample

- Stylized facts
- Model
- Calibration
- Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

Investigates the efficacy of energy prices in accelerating the green transition

- by studying how firms responds to energy shocks via
 - their capacity to change their energy mix (elasticity of substitution)
 - their innovation (clean/dirty) incentives (technical change bias)

Roadmap:

- 1 Sample
- 2 Price elasticity of energy demand estimates
- 3 Model & parameters calculation
- 4 Energy price simulations
- 5 Technical change bias

Energy market Supply-demand

- generate electricity using mainly clean sources (renewables and nuclear);
 - France: +80% clean
 - Portugal: +60% clean
 - consume clean and dirty energy sources to produce output:
 - Clean: electricity, steam, renewable
 - Dirty: natural gas, oil and fossil fuel related

Data Microdata infrastructure (MDI)

NZE and price signaling

- Motivation
- Research ques
- Sample
- Stylized facts
- Model
- Calibratio
- Technical change bias Conclusion
- Box 1: CompNet-OECD collaboration
- Box 2: CompNet-OeNB collaboration

CompNet

Next steps; references

Sample: France (2000-2020) and Portugal (2010-2020) to be expanded to Slovenia, Austria, and Germany

- Datasets used:
 - SBS¹ and BS (balance-sheet): used to recover firms' characteristics (e.g., size, age, turnover, etc.)
 - \blacksquare Energy: firms' energy expenditure and consumption \rightarrow prices
 - disaggregated by energy source (natural gas, coal, fossil fuel related, electricity, etc.)

¹Structural business statistics (Eurostat): detailed structure, economic activity, and performance of businesses over time

Marcelo, Piemonte Ribeiro

Stylized facts

Price elasticity of energy demand: specification

NZE and price signaling

Motivation

Research que

Sample

Stylized facts

Model

Calibratio

Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

How do energy prices impact firm-level energy consumption?Estimate log-log within-firm identification strategy:

$$E_{i,s,t} = \beta P_{i,s,t} + \theta_i + \theta_{s,t} + \epsilon_{i,s,t}$$
(1)

E & P: energy consumption and price, i: firm, t: year, s: sector

- β likely to be endogenous due to OVB²
 - To identify (1) shift-share IV à la Fontagné, Martin, and Orefice, 2024:
 - $p_{i,s,t}^{IV} = \left[\frac{p_{i,s,t_0}}{\overline{p}_{s,t_0}}\right] \times \overline{p}_{s,t}$ (exclude the *i* price on *s* average).
 - I.e., it multiplies P_i at t₀ (i.e., when firm enters the sample) by the growth rate of the sectoral average price at year t.

²E.g., Demand and technological shocks relate to inputs and energy prices consumed and negotiated by firms.

Marcelo, Piemonte Ribeiro

Stylized facts

Price elasticity of energy demand: results

NZE and price signaling

Motivation

Research question

Sample

Stylized facts

Model

Calibration

Technical change bias

Box 1: CompNet-OECD

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

Table: Price elasticity of clean and dirty energy demand

Dependent Variable: <i>Firm E_{type} demand</i> (In)						
	F	R	PT			
E_c price (ln)	-0.7501***	-0.1725*	-0.9030***	-0.9691***		
	(0.0432)	(0.073)	(0.0076)	(0.0469)		
Obs	150,336	149,271	478,959	469,140		
R2	0.946	0.944	0.937	0.936		
1st stage		0.6345***		0.5178***		
F-test (IV)		31,890.2		30,855.6		
E_d price (ln)	-0.9568***	-0.1719	-0.9129***	-0.8519***		
	(0.1112)	(0.1298)	(0.0127)	(0.0759)		
Obs	127,555	119,190	323,308	281,420		
R2	0.92818	0.927	0.962	0.963		
1st stage		0.4775***		0.1146***		
F-test (IV)		12,636.8		2,736.3		

Notes: Significance levels: * p<0.1; ** p<0.05; *** p<0.01. Standard errors clustered at firm-level. Year and firm fixed effects added.

• Why such a difference between countries?

Marcelo, Piemonte Ribeiro

Firm's problem Nested-CES

NZE and price signaling

- Motivation
- Research questio
- Sample
- Stylized facts

Model

Calibration Technical change bias

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

Top-Level CES in X and E

Production is a function of energy (E) and other inputs (X);

$$Y = \begin{bmatrix} \delta X^{\phi} + (1 - \delta) E^{\phi} \end{bmatrix}^{\frac{1}{\phi}}, \quad \phi < 1, \quad 0 < \delta < 1 \quad (2)$$

 $\sigma_{XE} = \frac{1}{1-\phi}$: elasticity of substitution between X and E;

Inner CES Clean vs Dirty Energy

Clean (E_c) and dirty (E_d) energy combined; A efficiency;

$$E = \left[\alpha \left(A_c E_c \right)^{\rho} + (1 - \alpha) \left(A_d E_d \right)^{\rho} \right]^{\frac{1}{\rho}}, \quad 0 < \alpha < 1, \quad (3)$$

Marcelo, Piemonte Ribeiro

NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized facts

Model

Calibration Technical change bias

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

Maximization

Lemmas

Top-Level CES in X and E

- Min costs ($C = w X + p_E E$) w.r.t. X & E yields E demand;

- Partial own-price elasticity of E w.r.t. pE:

$$\eta_{E,p_E} = -\sigma_{XE}\,\theta_E \tag{4}$$

where θ_E is firms' energy cost share.

Inner CES Clean vs Dirty Energy

- Minimizing energy costs w.r.t E in (3) yields

$$\frac{E_c}{E_d} = \frac{\alpha}{1-\alpha} \left(\frac{p_d/A_d}{p_c/A_c}\right)^{\frac{1}{1-\rho}}$$
(5)

$$\sigma_{cd}=rac{1}{1-
ho}$$
: elasticity of substitution between E_c and E_d

Marcelo, Piemonte Ribeiro

Summary statistics

Prices and energy mix

Dirty energy share & Clean/dirty energy price ratio (median) - annual trends FR PT 1.00 Share of 'Dirty' Energy 0.20 1.5an/di anty price 0.5 0.00 0.0 ส่าสำคัญ สำคำสำค่าส่า_ส่าส่า_ส่าส่า_ส่าส่า_{ส่}ส่าส่า_{ส่}น่าส่

Clean/dirty price ratio - Dirty energy share

• P_c has fallen more sharply than P_d , especially in PT;

• Share of E_d has declined gradually in both countries.

Marcelo, Piemonte Ribeiro

Net zero emissions and price signalling

NZE and price signaling

- Motivation

Model

- Technical change bias

Box 1: CompNet-OECD

- Box 2: CompNet-OeNB
- Next steps;

Model parametrization

Elasticity of substitution between E_d and E_c (σ_{cd})

NZE and price signaling

Motivation

Research question

Sample

Stylized facts

Model

Calibration

Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

• To identify σ_{cd} , I log-linearize (5) and instrument prices as in (1):

$$\ln\left(\frac{E_d}{E_c}\right) = -\ln\left(\frac{\alpha}{1-\alpha}\right) + \frac{1}{1-\rho}\left[\ln\left(\frac{p_c}{p_d}\right) + \ln\left(\frac{A_c}{A_d}\right)\right] \quad (6)$$

Table: Long-Run Elasticity of Substitution

Dependent Variable: $\ln \left(\frac{E_{d,it}}{E_{c,it}} \right)$						
	Port	ugal	France			
	(OLS)	(IV)	(OLS)	(IV)		
$\ln\left(\frac{P_{c,it}}{P_{d,it}}\right)$	0.8822***	0.9803***	1.892***	2.767***		
	(0.0029)	(0.0086)	(0.0588)	(0.1240)		
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark		
Year FE	\checkmark	\checkmark	\checkmark	\checkmark		
Observations	299,470	250,587	126,788	92,306		
R2	0.74	0.88	0.24	0.31		
F-test (IV only)		76,459.2		12,835.4		

Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01

Standard errors are clustered at the firm level.

Marcelo, Piemonte Ribeiro

Calibration

 P_E changes simulation

NZE and price signaling

- Motivation
- Research questi
- Sample
- Stylized facts
- Calibration
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

• Intuitively, keeping Y constant, following an \uparrow in P_E :

- a high σ_{cd} allows firms to buffer $\uparrow P_E$ by switching energy mix;
- a low σ_{cd} forces a stronger \downarrow overall E.

Table: Mean parameters

Country	$\overline{p_c}$	$\overline{p_d}$	$\overline{\theta_E}$	σ_{cd}	σ_{XE}
Portugal	0.015	1.200	0.042	0.95	1.0
France	0.98	0.60	0.017	2.75	1.0

 σ_{XE} =1 \rightarrow Cobb–Douglas assumption. θ_E : energy costs. *P* in K€/GJ

- From (4), if $P_E \uparrow by + k\% \rightarrow E$ changes by $-\sigma_{XE} \theta_E k\%$.
 - PT: $\Delta E = -1 \times 0.042 \times 10\% = -0.42\%$. (+400% \rightarrow -16.8%)
 - FR: $\Delta E = -1 \times 0.017 \times 10\% = -0.17\%$. (+400% \rightarrow -6.8%)

Marcelo, Piemonte Ribeiro

Calibration

Changes in E_d shares

NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized
- Model
- Calibration
- Technical change bias
- Box 1: CompNet-OECD collaboration
- Box 2: CompNet-OeNB collaboration
- Next steps; references

Yearly % change in dirty energy by Country

CompNet

Marcelo, Piemonte Ribeiro

Net zero emissions and price signalling

Berlin, March 2025 14/27

Forecast E_d shares

NZE and price signaling

- Motivation
- Research questic
- Sample
- Stylized fac
- Model
- Calibration
- Technical change bias Conclusion
- Box 1: CompNet-OECD collaboration
- Box 2: CompNet-OeNB collaboration
- Next steps; references

Technical change bias

Market size vs price effects

NZE and price signaling

- Motivation
- Research questi
- Sample
- Stylized facts
- Model
- Calibratio

Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

- \blacksquare Technical change literature relates ρ to innovation bias:
 - Market size: innovation towards abundant and cheaper energy $(\sigma_{cd} > 1 : E_c, E_d \text{ substitutes})$
 - Price effects: innovation towards more expensive energy source $(\sigma_{cd} < 1 : E_c, E_d \text{ complementarity})$

Following Jo, 2024, plug σ_{cd} in (5) to calculate technical change bias, $\frac{A_c}{A_d}$, and relate to price ratio, $\frac{Pc}{Pd}$.

Technical change bias

NZE and price signaling

Technical change bias

Box 1: CompNet-OECD

Box 2: CompNet-OeNB

Next steps;

CompNet

Net zero emissions and price signalling

Berlin, March 2025 17/27

Policy implications

NZE and price signaling

- Motivation
- Research questi
- Sample
- Stylized facts
- Model
- Calibration
- Technical change bias
- Conclusion
- Box 1: CompNet-OECD collaboration
- Box 2: CompNet-OeNB collaboration
- Next steps; references

CompNet

1 Increasing $\frac{P_d}{P_c}$ (e.g., via carbon taxes) has a lower impact

- in countries with higher σ_{cd} firms can relocate energy inputs (FR);
- lower σ_{cd} forces firms to reduce E and improve efficiency (PT).
- Direction of innovation can amplify price ratio effects in the long-run.
- 3 Limitations/next steps:
 - Different σ_{cd} by industry and firm-size (Jo, 2024)
 - Endogenous elasticity substitution (VES vs CES) matters (i.e., σ_{cd} varies across years) (Jo and Miftakhova, 2024)

Marcelo, Piemonte Ribeiro Net zero emissions and price signalling

Berlin, March 2025 18/27

Box 1: CompNet-OECD³ collaboration

To what extent environmental policies influence firm-level relative fuel prices

NZE and price signaling

- Motivation
- Research questio
- Sample
- Stylized facts
- Model
- Calibratio
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

- Box 2: CompNet-OeNB collaboration
- Next steps; references

CompNet

- Sectoral energy mixes stay stable despite stricter EPS.
- We examine the impact of environmental policies on firm-level relative fuel prices.

³With Fatih Ozturk, Filiz Unsal - OECD

Marcelo, Piemonte Ribeiro

Box 1: CompNet-OECD collaboration

Specification

NZE and price signaling

- Motivation
- Research questi
- Sample
- Stylized facts
- Model
- Calibratio
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

- Box 2: CompNet-OeNB collaboration
- Next steps; references

CompNet

Our initial specification includes

$$\frac{P_{i,t}^d}{P_{i,t}^c} = \beta EPS_t \times \frac{EI_{i,t_0}^d}{EI_{i,t_0}^c} + \theta_s \times \delta_t + \epsilon_{i,t}$$
(7)

- Unobservables impact firm prices \rightarrow EPS \rightarrow simultaneity (Benatti et al., 2024)
 - Attenuate it by interacting EPS with energy intensity ratio at firm-level at time t₀:
 - Interaction creates firms' ex-ante exposure to changes in EPS
- Firms' tend to delay their reaction to EPS; we capture it via
 - local projection approach à la Jordà, 2005 with a horizon of five years.

Marcelo, Piemonte Ribeiro Net zero emis

Box 1: CompNet-OECD collaboration

EPS impact on Dirty/Clean energy prices ratio (log-log)

NZE and price

Marcelo, Piemonte Ribeiro

- signaling Motivation
- Research question
- Sample
- Stylized facts
- Model
- Calibratio
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

- Box 2: CompNet-OeNB collaboration
- Next steps; references

CompNet

Similar coefficients (about 0.02), no precision in PT.

\blacksquare Cumulative response of about 0.6% for a \uparrow 10% in EPS

Box 2: CompNet-OeNB⁴ collaboration

Energy prices and use: decomposition and concentration

NZE and price signaling

- Motivation
- Research questio
- Sample
- Stylized fact
- Model
- Calibration
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

CompNet

 About 15% of the firms consume up to 90% of their countries' total energy

⁴With Sellner, R., Reinstaller, A. Austrian productivity board (OeNB) Marcelo, Piemonte Ribeiro Net zero emissions and price signalling Berlin, March 2025 22/27

Box 2: CompNet-OeNB collaboration

Energy prices and use: decomposition and concentration

NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized fact
- Model
- Calibratio
- Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references These 'mega-consumers' pay lower energy prices⁵ have more employees, turnover, and energy costs, and are much more energy efficient.

			-				•		
group	Country	% firms	E Price	Empl	Turnover	E costs	L costs	Clean eff	Dirty eff
E	FR	0.23	0.67	5.13	6.2	2.86	0.76	4.25	6.87
E	PT	0.08	0.4	7.3	7.26	1.86	1.2	18.04	7.26
E _{clean}	FR	0.26	0.75	5.27	6.39	2.42	0.77	4.56	3.72
Eclean	PT	0.1	0.52	6.09	6.41	1.36	1.26	16.5	2.3
Edirty	FR	0.2	0.75	4.25	4.92	2.83	0.78	2.97	8.07
Edirty	PT	0.11	0.02	8.47	9.69	1.75	1.18	3.53	6.4

Firms consuming 90% of country energy vs rest firms - comparison

CompNet

⁵E.g., FR mega-consumers pay about 33% less in energy, column 4.

Marcelo, Piemonte Ribeiro

Net zero emissions and price signalling

Berlin, March 2025 23/27

Next steps

NZE and price signaling

- Motivation
- Research question
- Sample
- Stylized facts
- Model
- Calibratio
- Technical change bias

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

NZE and price signaling:

- Document time-varying (VES) micro elasticities of substitution between energy inputs;
- recover macro elasticities from micro ones
- CompNet-OECD collaboration:
 - Fine-tune specifications;
 - Use tested IV with LP;
 - Test DiD policy in FR
- Energy-use by product : presented at the last TSI trainning.
 - First results in FR compared to CBAM values;
 - Expand to other countries and test energy shocks.

NZE and price signaling

- Motivation
- Research questio
- Sample
- Stylized facts
- Model
- Calibration
- Technical change bias
- Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

Thank you! Q & A

CompNet

Marcelo, Piemonte Ribeiro

Net zero emissions and price signalling

Berlin, March 2025 25/27

References I

NZE and price signaling

- Model
- Technical change bias

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps: references

CompNet

André, Christophe et al. (May 11, 2023). Rising energy prices and productivity: short-run pain, long-term gain? Paris: OCDE. Benatti, Nicola et al. (2024). "The Impact of Environmental

Regulation on Clean Innovation: Are There Crowding Out Effects?" In: ECB Working Paper 2946.

- ECB (May 26, 2024). Europe's tragedy of the horizon: the green transition and the role of the ECB. Ed. by European Central Bank. l etter
- Fontagné, Lionel, Philippe Martin, and Gianluca Orefice (Jan. 1, 2024). "The many channels of firm's adjustment to energy shocks: evidence from France". In: Economic Policy 39.117, pp. 5-43.
- Hambel, Christoph, Ton Van den Bremer, and Frederick Van Der Ploeg (2024). "A new way to price carbon: Understanding the social cost of carbon". In: *CEPR*. Accessed: 2023-03-08.

References II

NZE and price signaling

- Motivation
- Research questi
- Sample
- Stylized fac
- Model
- Calibration
- Technical change bias Conclusion

Box 1: CompNet-OECD collaboration

Box 2: CompNet-OeNB collaboration

Next steps; references

Hémous, David and Morten Olsen (2021). "Directed Technical Change in Labor and Environmental Economics". In: *Annual Review of Economics* 13.1, pp. 571–597.

- Jo, Ara (2024). "Substitution Between Clean and Dirty Energy with Biased Technical Change". In: *International Economic Review* 0 (0).
 - Jo, Ara and Alena Miftakhova (May 2024). "How constant is constant elasticity of substitution? Endogenous substitution between clean and dirty energy". en. In: *Journal of Environmental Economics and Management* 125.
- Jordà, Òscar (2005). "Estimation and Inference of Impulse Responses by Local Projections". In: *American Economic Review*.
- WB (2024). Carbon Pricing Dashboard Data. https: //carbonpricingdashboard.worldbank.org/about#downloaddata. Accessed: 2023-03-08.