CompNet-Japan Workshop 12, May, 2025 Gakushuin University, Tokyo, Japan

### AI and Intangible Investments in Korea from The Survey of Business Activities

Hak K. Pyo (Professor Emeritus, Seoul National University )Keun H. Rhee (Institute of Economic Research, Seoul National University)Hyuntae Kim ( Department of Economics, Seoul National University)Jaewon Park (Department of Economics, George Mason University)

### I. Trend of AI firms

• The proportion of AI-invested firms among total sample firms in the Survey of Business Activity conducted by Statistics Korea has an increasing trend. On average 3.5% in the Korean sample firms during 2017-2023 had invested in AI.

### **||. Proportion of AI firms by firm-specifics**

- The proportion of AI firms is relatively bigger in service than in manufacturing
- The proportion of AI firms in ICT sector such as ICT-Producing, ICT-Using sector are bigger than in Non-ICT sector

#### Table 1 Trend of AI firms (Total Sample Firms)

<firms, %>

|      | Total<br>(A) | AI firms<br>(B) | Non-Al firms<br>(C) | B/A*100 | C/A*100 |
|------|--------------|-----------------|---------------------|---------|---------|
| 2017 | 12,579       | 173             | 12,406              | 1.4     | 98.6    |
| 2018 | 13,144       | 350             | 12,794              | 2.7     | 97.3    |
| 2019 | 13,255       | 407             | 12,848              | 3.1     | 96.9    |
| 2020 | 13,429       | 469             | 12,960              | 3.5     | 96.5    |
| 2021 | 13,448       | 504             | 12,944              | 3.7     | 96.3    |
| 2022 | 13,824       | 577             | 13,247              | 4.2     | 95.8    |
| 2023 | 14,546       | 865             | 13,681              | 5.9     | 94.1    |
| Avg. |              |                 |                     | 3.5     |         |

### **||. Ratio of AI firms by firm-specifics**

- The proportion of AI firms in detailed industries are in descending order as follows:
  - i) insurance,
  - ii) computer programming,
  - iii) publishing,
  - iv) information service,
  - v) telecommunications,
  - vi) financial service etc.
- The proportion of AI firms is bigger in large business than in SMEs

#### Figure 1 Proportion of AI firms (Manufacturing vs. Service)



#### Figure 2 Proportion of AI firms(ICT sectors)

<rate(%)>



#### Figure 3 Proportion of AI firms(2-digit industries)



#### Figure 4 Proportion of AI firms by firm size

<rate(%)>



## III. Purpose of AI-Adoption: Response by Sample Firms

- The main purpose in adoption of AI technology is product(or service) development among other purposes. The other purposes are cited as below;
  - (Manufacturing) production process
- (Service) sales or marketing

#### Figure 5 Purposes of AI adoption (Manufacturing vs. Service)



#### Figure 6 Purpose of AI adoption (ICT-sectors)

<rate(%)>



### **IV. AI Intensity**

• Al Intensity= $\sum_{i}^{j} A_{ij}$  / Maximum value (Table 2)

# i = complementary assets (ex: IoT, Cloud, Big Data, 3D printing, Robotics etc.) j = AI adoption purposes Max.value = 30

Reference:

- 1) Czarnitzki, Fernandez, and Rammer (2023), Artificial Intelligence and Firm-level Productivity, *Journal of Economic Behavior and Organization*, Vol. 211, p. 194
- 2) Lee, Yong Suk, Taekyun Kim, Sukwoong Choi, and Wonjoon Kim (2022), When does AI pay off? AIadoption intensity, complementary investments, and R&D strategy. *Technovation* 118, pp. 4-5

#### Table 2 Basic format for AI Intensity

|                 | (A) Product(service)<br>development | (B) Production<br>process | (C) Sales | (D) Marketing | (E) Organization<br>management |
|-----------------|-------------------------------------|---------------------------|-----------|---------------|--------------------------------|
| (1) IoT         |                                     |                           |           |               |                                |
| (2) Cloud       |                                     |                           |           |               |                                |
| (3) Big Data    |                                     |                           |           |               |                                |
| (4) AI          |                                     |                           |           |               |                                |
| (5) 3D Printing |                                     |                           |           |               |                                |
| (6) Robotics    |                                     |                           |           |               |                                |

Source: Statistical Office(2017-2023), Survey of Business Activities Note: The 6 technologies are related with the 4<sup>th</sup> Industrial Revolution, and complementary technologies

#### Figure 7 AI Intensity (Manufacturing vs. Service)

<intensity>



#### Figure 8 AI Intensity (ICT sectors)

<intensity>



### V. AI adoption and Labor productivity

- Labor productivity= Real value-added / employee
- Measurement of value added
  - 1) Operating profit
  - 2) Labor cost
  - 3) Taxes and Dues
  - 4) Depreciation expenses
  - 5) Bad debt expenses

#### **1. Level of Labor Productivity**

|      | -               | · · · · · ·         |     |
|------|-----------------|---------------------|-----|
|      | Labor pro       |                     |     |
|      | Al firms<br>(A) | Non-AI firms<br>(B) | A/B |
| 2017 | 174             | 125                 | 1.4 |
| 2018 | 214             | 119                 | 1.8 |
| 2019 | 205             | 112                 | 1.8 |
| 2020 | 215             | 114                 | 1.9 |
| 2021 | 278             | 116                 | 2.4 |
| 2022 | 289             | 118                 | 2.4 |
| 2023 | 240             | 109                 | 2.2 |
| Avg. | 231             | 116                 | 2.0 |

#### Table 3 Labor Productivity of AI firm and Non-AI firm(Total samples)

(Mill. KRW, %)

#### Table 4 Labor Productivity of AI firm and Non-AI firm(Manufacturing vs. Service)

(Mill. KRW, %)

|      | Manufacturing |                  | Service |              |                  |     |
|------|---------------|------------------|---------|--------------|------------------|-----|
|      | Al firms (A)  | Non-Al firms (B) | A/B     | Al firms (A) | Non-Al firms (B) | A/B |
| 2017 | 163           | 154              | 1.1     | 157          | 96               | 1.6 |
| 2018 | 222           | 148              | 1.5     | 192          | 91               | 2.1 |
| 2019 | 178           | 134              | 1.3     | 222          | 92               | 2.4 |
| 2020 | 185           | 135              | 1.4     | 227          | 94               | 2.4 |
| 2021 | 303           | 134              | 2.3     | 238          | 103              | 2.3 |
| 2022 | 304           | 138              | 2.2     | 248          | 105              | 2.4 |
| 2023 | 225           | 129              | 1.7     | 245          | 98               | 2.5 |
| Avg. | 226           | 139              | 1.6     | 218          | 97               | 2.2 |

### Figure 9 Labor Productivity Gap between AI firms and Non-AI firms (Manufacturing and Service)

<productivity gap>



Source: Statistical Office(2017-2023), Survey of Business Activities

### Table 5 Labor Productivity between AI firm and Non-AI firm (ICT sectors, 2017-23)

(Mill. KRW, %)

|               | Al firms<br>(A) | Non-Al firms<br>(B) | A/B |
|---------------|-----------------|---------------------|-----|
| ICT-Producing | 253             | 152                 | 1.7 |
| ICT-Using     | 231             | 100                 | 2.3 |
| Non-ICT       | 207             | 116                 | 1.8 |

### Figure 10 Labor Productivity Gap between AI firms and Non-AI firms (ICT sectors)

<productivity gap>



Source: Statistical Office(2017-2023), Survey of Business Activities

### Table 6 Labor Productivity Gap between AI firms and Non-AI firms (detailed industries, Manufacturing)

|                                                                |            | (Mill. KRW, %) |     |
|----------------------------------------------------------------|------------|----------------|-----|
|                                                                | Al firm(A) | Non-Al FIRM(B) | A/B |
| 1) Printing and reproduction of recorded media                 | 174        | 65             | 2.7 |
| 2) Basic metals                                                | 276        | 131            | 2.1 |
| 3) Motor vehicles, trailers and semitrailers                   | 191        | 119            | 1.6 |
| 4) Electronic components, computer                             | 310        | 193            | 1.6 |
| 5) Fabricated metal products                                   | 119        | 88             | 1.4 |
| 6) Coke and refined petroleum products                         | 522        | 396            | 1.3 |
| 7) Medical, precision and optical instruments                  | 137        | 108            | 1.3 |
| 8) Other machinery and equipment                               | 145        | 118            | 1.2 |
| 9) pulp, paper and paper products                              | 156        | 131            | 1.2 |
| 10) Rubber and plastics products                               | 121        | 103            | 1.2 |
| 11) Other manufacturing                                        | 92         | 86             | 1.1 |
| 12) Pharmaceuticals, medicinal chemical and botanical products | 132        | 125            | 1.1 |
| 13) Food products                                              | 96         | 95             | 1.0 |
| 14) Chemicals and chemical products                            | 202        | 219            | 0.9 |
| 15) Other transport equipment                                  | 79         | 86             | 0.9 |
| 16) Other non-metallic mineral products                        | 126        | 152            | 0.8 |
| 17) Electrical equipment                                       | 96         | 117            | 0.8 |
| 18) Beverages                                                  | 139        | 179            | 0.8 |

### Table 7 Labor Productivity Gap between AI firms and Non-AI firms (detailed industries, Service)

| (Mill. | KRW, | %) |
|--------|------|----|
|--------|------|----|

|                                                                       | AI firm(A) | Non-Al FIRM(B) | A/B |
|-----------------------------------------------------------------------|------------|----------------|-----|
| 1) Land transport and transport via pipelines                         | 198        | 61             | 3.3 |
| 2) Broadcasting activities                                            | 322        | 141            | 2.3 |
| 3) Computer programming                                               | 173        | 79             | 2.2 |
| 4) Activities auxiliary to financial service and insurance activities | 291        | 134            | 2.2 |
| 5) Postal activities and telecommunications                           | 357        | 204            | 1.8 |
| 6) Architectural, engineering and other scientific technical services | 134        | 77             | 1.7 |
| 7) Air transport                                                      | 247        | 165            | 1.5 |
| 8) Business support services                                          | 51         | 39             | 1.3 |
| 9) Wholesale trade on own account                                     | 148        | 127            | 1.2 |
| 10) Retail trade                                                      | 88         | 82             | 1.1 |
| 11) Rental and leasing activities                                     | 349        | 328            | 1.1 |
| 12) Accommodation                                                     | 90         | 86             | 1.1 |
| 13) Insurance and pension funding                                     | 164        | 158            | 1.0 |
| 14) Publishing activities                                             | 93         | 96             | 1.0 |
| 15) Education                                                         | 52         | 56             | 0.9 |
| 16) Financial service activities                                      | 420        | 460            | 0.9 |
| 17) Information service activities                                    | 185        | 217            | 0.9 |
| 18) Water transport                                                   | 495        | 592            | 0.8 |
| 19) Professional services                                             | 112        | 139            | 0.8 |
| 20) Other professional, scientific and technical services             | 89         | 137            | 0.6 |

#### **2.** Growth of Labor Productivity

Table 8 Growth of Labor Productivity (AI firms, Total samples) (log growth rates(%))

|      | Real VA | Employees | Productivity |
|------|---------|-----------|--------------|
| 2017 | -       | -         | -            |
| 2018 | 75.9    | 55.0      | 20.9         |
| 2019 | 12.9    | 16.9      | -4.0         |
| 2020 | 3.6     | -1.0      | 4.6          |
| 2021 | 51.1    | 25.3      | 25.8         |
| 2022 | 12.1    | 8.1       | 3.9          |
| 2023 | -4.4    | 14.5      | -18.9        |
| Avg. | 25.2    | 19.8      | 5.4          |

#### Table 9 Growth of Labor Productivity (Non-AI firms, Total samples )

(log growth rates(%))

|      | Real VA | Employees | Productivity |
|------|---------|-----------|--------------|
| 2017 | -       | -         | -            |
| 2018 | -8.8    | -4.3      | -4.5         |
| 2019 | -6.4    | -0.5      | -5.9         |
| 2020 | 3.0     | 1.3       | 1.8          |
| 2021 | 1.3     | -0.1      | 1.4          |
| 2022 | 1.9     | -0.2      | 2.1          |
| 2023 | -7.3    | 0.7       | -8.0         |
| Avg. | -2.7    | -0.5      | -2.2         |

#### Table 10 Growth of Labor Productivity (Manufacturing, 2017-23)

(log growth rates(%))

|              | Real VA | Employees | Productivity |
|--------------|---------|-----------|--------------|
| AI firms     | 31.7    | 26.2      | 5.4          |
| Non-Al firms | -5.7    | -2.8      | -2.9         |

#### Table 11 Growth of Labor Productivity (Service, 2017-23)

(log growth rates(%))

|              | Real VA | Employees | Productivity |
|--------------|---------|-----------|--------------|
| AI firms     | 23.1    | 15.6      | 7.5          |
| Non-Al firms | 1.2     | 0.9       | 0.2          |

#### Table 12 Growth of Labor Productivity (ICT sectors, 2017-23)

(log growth rates(%))

|             | Real VA   | Employees     | Productivity |
|-------------|-----------|---------------|--------------|
|             |           | ICT-Producing |              |
| AI firm     | 40.5      | 29.2          | 11.4         |
| Non-Al firm | -10.1     | -5.8          | -4.3         |
|             | ICT-Using |               |              |
| AI firm     | 21.7      | 15.9          | 5.8          |
| Non-Al firm | 1.3       | 0.4           | 0.9          |
|             |           | Non-ICT       |              |
| AI firm     | 17.9      | 15.9          | 2.0          |
| Non-Al firm | -2.3      | 0.6           | -2.8         |

### VI. Determinants of Labor Productivity with AI

Model(1)

 $lnPL_{it} = \alpha + \beta_1 lnPL_{-1} + \beta_2 AI(1)_{it} + \beta_3 f_{it} + \beta_4 D_i + e_{it}$ 

• Model(2)

 $lnPL_{it} = \alpha + \beta_1 lnPL_{-1} + \beta_2 AI(2)_{it} + \beta_3 f_{it} + \beta_4 D_i + e_{it}$ 

Then

- *PL* = *labor productivity*
- AI(1) = AI adoption(binary), AI(2) = AI Intensity
- f = firm fixed effect,
  - (RATE) rate of intangible to tangible asset
  - (COMP) complementary asset points
  - (SIZE) firm size
  - (ICT) ICT sector (ICT-Producing, ICT-Using, Non-ICT)
- D = dummy var. (2020 year = 1)

|                       | OLS                  |                      | Fixed effect         |                      | First Difference     |                      | Sys-GMM                      |                                 |
|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------------|---------------------------------|
|                       | M1                   | M2                   | M1                   | M2                   | M1                   | M2                   | M1                           | M2                              |
| PL_1                  | 0.786***<br>(0.008)  | 0.786***<br>(0.008)  | 0.006<br>(0.017)     | 0.006<br>(0.017)     | 0.183***<br>(0.054)  | 0.183***<br>(0.054)  | 0.300***<br>(0.070)          | 0.300***<br>(0.070)             |
| AI(1)                 | 0.017<br>(0.015)     |                      | 0.010<br>(0.023)     |                      | -0.014<br>(0.030)    |                      | -0.018<br>(0.024)            |                                 |
| AI(2)                 |                      | 0.528<br>(0.456)     |                      | 0.318<br>(0.718)     |                      | -0.438<br>(0.905)    |                              | -0.565<br>(0.741)               |
| Rate                  | -0.000<br>(0.000)    | -0.000<br>(0.000)    | -0.001**<br>(0.000)  | -0.001<br>(0.000)    | -0.000<br>(0.000)    | -0.000<br>(0.000)    | -0.002<br>(0.001)            | -0.002<br>(0.001)               |
| COMP                  | 0.006<br>(0.007)     | -0.011<br>(0.018)    | -0.018*<br>(0.011)   | -0.029<br>(0.028)    | 0.013<br>(0.014)     | 0.027<br>(0.035)     | -0.010<br>(0.014)            | 0.008<br>(0.031)                |
| SIZE                  | 0.068***<br>(0.015)  | 0.068***<br>(0.015)  | -0.388***<br>(0.047) | -0.388***<br>(0.047) | -0.485***<br>(0.064) | -0.485***<br>(0.064) | -0.440***<br>(0.079)         | -0.440***<br>(0.079)            |
| ICT                   | 0.015<br>(0.016)     | 0.015<br>(0.016)     | 0.010<br>(0.109)     | 0.010<br>(0.109)     | -0.245<br>(0.191)    | -0.245<br>(0.191)    | -0.467*<br>(0.251)           | -0.467*<br>(0.251)              |
| Dum                   | -0.074***<br>(0.018) | -0.074***<br>(0.018) | -0.073***<br>(0.015) | -0.073***<br>(0.015) | -0.062***<br>(0.018) | -0.062***<br>(0.018) | -0.076***<br>(0.020)         | -0.076***<br>(0.020)            |
| Const.                | 0.972***<br>(0.041)  | 0.972***<br>(0.041)  | 4.780***<br>(0.118)  | 4.780***<br>(0.118)  | -0.001<br>(0.011)    | -0.001<br>(0.011)    | 3.816***<br>(0.399)          | 3.816***<br>(0.399)             |
| Adj R <sup>2</sup>    | 0.67                 | 0.67                 | 0.02                 | 0.02                 | 0.00                 | 0.00                 |                              |                                 |
| Obs.                  | 4,915                | 4,915                | 4,915                | 4,915                | 1,762                | 1,762                | 4,915                        | 4,915                           |
| <i>x</i> <sup>2</sup> |                      |                      | 1485.10***           | 1485.10***           |                      |                      |                              |                                 |
| Prob > z              |                      |                      |                      |                      |                      |                      | AR(1) -7.54***<br>AR(2) 1.39 | AR(1) -7.54***<br>AR(2) 1.39 30 |

#### Table 13 Determinants of labor productivity

#### [Estimation Results]

- AI effect to labor productivity growth is not verified definitely
- The effect of complementary asset of AI to labor productivity growth is not also mixed but can not be confirmed
- The effect of the intangible over tangible rate is negative but insignificant
- Labor productivity growth of **SMEs** becomes to be larger than large business
- Time dummy of **COVID-19** is confirmed

### **VII. Summary and Implications**

#### 1. Stylized facts

✓ Adoption ratio of AI (2017-23) : 3.5%

✓ AI-led sectors:

- Service than manufacturing
- ICT-Producing than other ICT sectors
- Large business than SMEs
- ✓ AI adoption purpose
  - Production (service) development

✓ Level of aggregated labor productivity (2017-23)

- labor productivity gap (Industry base)
  - Total samples : 2.0 (AI firm(231) /Non-AI firm (113 mill. KRW))
  - Manufacturing : 1.6 (AI firm(226) /Non-AI firm (139 mill. KRW))
  - Service : 2.2 (AI firm(218) /Non-AI firm (97 mill. KRW))
- labor productivity gap (ICT sector)
  - ICT-Producing : 1.7 (AI firm(253) /Non-AI firm (152 mill. KRW))
  - ICT-Using : 2.3 (AI firm(231) /Non-AI firm (100 mill. KRW))
  - Non-ICT : 1.8 (AI firm(207) /Non-AI firm (116 mill. KRW))

- labor productivity gap (detailed industries, Manufacturing)
  - 1) Printing and reproduction of recorded media(2.7)
  - 2) Basic metals(2.1)
  - 3) Motor vehicles, trailers and semitrailers(1.6)
  - 4) Electronic components, computer(1.6)
  - 5) Fabricated metal products(1.4)
- labor productivity gap (detailed industries, Service)
  - 1) Land transport and transport via pipelines(3.3)
  - 2) Broadcasting activities(2.3)
  - 3) Computer programming(2.2)
  - 4) Activities auxiliary to financial service and insurance activities(2.2)
  - 5) Postal activities and telecommunications(1.8)

- ✓ Growth of labor productivity (2017-23 avg.)
  - Total samples : AI firm(5.4%) > Non-AI firm (-2.2%)
  - Manufacturing: AI firm(5.4%) > Non-AI firm (-2.9%)
  - Service : AI firm(7.5%) > Non-AI firm (0.2%)
- ✓ Growth of labor productivity (2017-23 avg.)
  - Total samples : AI firm(11.4%) > Non-AI firm (-4.3%)
  - Manufacturing: AI firm(5.8%) > Non-AI firm (0.9%)
  - Service : AI firm(2.0%) > Non-AI firm (-2.8%)

#### 2. Determinants of labor productivity

- AI effect to labor productivity growth is not verified definitely
- The effect of complementary asset of AI to labor productivity growth is not also mixed but can not be confirmed
- The effect of the intangible over tangible rate is negative but insignificant
- Labor productivity growth of SMEs becomes to be larger than large business
- Time dummy of COVID-19 is confirmed

#### **3. Implications**

• We should put in mind there may be the positive as well as the negative reaction of the AI effect to the achievement of firms including productivity. We have to reconsider productivity paradox, and productivity J-curve.

• Considering the beginning of AI adoption we need to invest positively on digital infrastructure, digital capacities, digital skill in order that AI technology becomes to be matured as General Purpose Technology (GPT)

• Simultaneously, we have to understand that AI is an intangible capital of SW in CHS classification if we take into account the intangible capital as another axis of economic growth.

• We have to consider that the spillover effects of AI have influenced not only the upstream cycle but also the downstream cycle, so it would be a new production factor impacting product innovation and process innovation.

#### • Binary Probit Model (AI-adopted firm = 1)

 $Pr(ADOP_{AI,i} = 1) = \varphi(\beta_0 + \beta_1 \log L_i + \beta_2 \log INTANASS_i + \beta_3 ADOP_{Big,i} + \beta_4 ADOP_{IoT,i} + \beta_5 ADOP_{CLO,i} + \gamma_j)$ 

Delta Method for Marginal Effects: 
$$\frac{\Delta \Pr(ADOP_{AI,i} = 1)}{\Delta x_k} = \varphi(X\beta) \cdot \beta_k$$

Then

- $ADOP_{AI,i}$  = Binary indicator (AI-adopted firm i = 1, Non-use of AI = 0)
- $-\log L_i = \text{Log of number of workers of firm } i$
- $-\log INTANASS_i = \text{Log of intangible assets of firm } i$
- $ADOP_{Big,i}$ ,  $ADOP_{IoT,i}$ , and  $ADOP_{CLO,i}$  = Binary indicator (Technology-adopted (Bigdata, IoT, and Cloud computing) = 1, Non-use = 0)
- $\gamma_j$  = Industry-fixed effect for industry *j*
- $\varphi(X\beta)$  = Standard normal density function (PDF)

| Variable                                      | Log likelihood      | Delta-method<br>(dy/dx) |
|-----------------------------------------------|---------------------|-------------------------|
| Log_Number of Workers                         | .1349***<br>(.0139) | .0432***<br>(.0044)     |
| Log_Intangible Assests                        | .0347***<br>(.0066) | .0111***<br>(.0021)     |
| Big Data<br>(Adopted = 1, Non-use = 0)        | .4404***<br>(.0298) | .1409***<br>(.0092)     |
| IoT<br>(Adopted = 1, Non-use = 0)             | .0322<br>(.0309)    | .0103<br>(.0099)        |
| Cloud computing<br>(Adopted = 1, Non-use = 0) | 2104***<br>(.0293)  | 0673***<br>(.0093)      |
| Observation                                   | 9,390               | 9,390                   |
| Industry-Fixed Effect                         | Ο                   | О                       |
| R-squared                                     | .1110               | Х                       |

#### Table 1. Empirical Result

Note: ( ) indicates standard errors for each variable Significance level: \*p < 0.10, \*\*p < 0.05, \*\*\*p < 0.01

1. Industry-specific Analysis

- Firms in the manufacture of electronic components, computer, visual, sounding, and communication equipment sector with more than 100 employees ( $L \ge 100$ ).
- For a more precise estimation, two separate models were employed:
  a) Model including the number of employees (*L*)
  b) Model excluding it
- This approach allows for accounting for potential size effects while isolating the impact of other factors, particularly important in our industry-specific analysis of firms with more than 100 employees ( $L \ge 100$ ).

| Variable                                      | Log likelihood      | Delta-method<br>(dy/dx) |
|-----------------------------------------------|---------------------|-------------------------|
| Log_Number of Workers                         | .1662**<br>(.0701)  | .0542**<br>(.0224)      |
| Log_Intangible Assests                        | .0460<br>(.0325)    | .0150<br>(.0105)        |
| Big Data<br>(Adopted = 1, Non-use = 0)        | .6837***<br>(.1564) | .2229***<br>(.0480)     |
| IoT<br>(Adopted = 1, Non-use = 0)             | 4963***<br>(.1272)  | 1618***<br>(.0397)      |
| Cloud computing<br>(Adopted = 1, Non-use = 0) | 0806<br>(.1448)     | 0263<br>(.0472)         |
| Observation                                   | 468                 | 468                     |
| Industry-Fixed Effect                         | X                   | Х                       |
| <b>R-squared</b>                              | .1144               | X                       |

#### Table 2. Results of Industry-specific Analysis with L

Note: ( ) indicates standard errors for each variable Significance level: p < 0.10, p < 0.05, p < 0.01

| Variable                                      | Log likelihood      | Delta-method<br>(dy/dx) |
|-----------------------------------------------|---------------------|-------------------------|
| Log_Intangible Assests                        | .0947***<br>(.0256) | .0313***<br>(.0081)     |
| Big Data<br>(Adopted = 1, Non-use = 0)        | .7435***<br>(.1536) | .2454***<br>(.0468)     |
| IoT<br>(Adopted = 1, Non-use = 0)             | 5074***<br>(.1267)  | 1675***<br>(.0399)      |
| Cloud computing<br>(Adopted = 1, Non-use = 0) | 0435<br>(.1436)     | 0143<br>(.0474)         |
| Observation                                   | 468                 | 468                     |
| Industry-Fixed Effect                         | Х                   | X                       |
| R-squared                                     | .1050               | Х                       |

#### Table 3. Results of Industry-specific Analysis without L

Note: ( ) indicates standard errors for each variable Significance level: p < 0.10, p < 0.05, p < 0.01

### **Appendix 1** Binary Probit Model (AI-adopted firm = 1)

1. Model

• Binary Probit Model (AI-adopted firm = 1)

 $Pr(ADOP_{AI,i} = 1) = \varphi(\beta X_i)$ 

Marginal Effects: 
$$\frac{\Delta \Pr(ADOP_{AI,i} = 1)}{\Delta X_{ih}} = \varphi(\boldsymbol{\beta} \boldsymbol{X}_i) \cdot \beta_h$$

Then

- $ADOP_{AI,i}$  = Binary indicator (AI-adopted firm i = 1, Non-use of AI = 0)
- $X_i$  = Explanatory variables
- $\varphi(X\beta)$  = Standard normal density function (PDF)

2. Data

- Business Activity Survey from kostats
- Handling Missing Data with Random Forest Imputation
- 3. Selecting Explanatory variables
- Some important variables (McFadden R-squared 0.1332) [Figure A-1]
- Industry Division
- Financial Status (Intangible Asset, Non-Intangible Asset, Debt, Real-Value Added)
- Adoption of Complementary Assets of AI (IOT, Cloud Computing, Bigdata, 3D Printing, Robotics)
- Stepwise Selection Method (McFadden R-squared 0.1848) [Figure A-2]
- A method to find the most predictive combination of variables through repeated addition and removal of variables
- The Brier Score was used to assess predictive accuracy (Brier Score  $=\frac{1}{n}\sum_{t=1}^{n} estimated \ prob_t real_t$ )

#### Figure A-1 Industry Effects on AI Adoption Probability



Education Arts, sports and recreation related services

#### **Appendix 1 Implications**

• Among all industries, the probability of AI adoption has increased the most in the education division.

• While the probability of AI adoption has declined in most manufacturing industries, it has increased in high-tech divisions such as the manufacture of electronic components, computers, visual, sound, and communication equipment, as well as the manufacture of medical, precision, and optical instruments, watches, and clocks.

• The probability of AI adoption has increased significantly in certain service industries, such as information and communication, as well as financial and insurance sectors.

#### Figure A-2 Key Factors on AI Adoption Probability



Industry Section
 Complementary Assets of AI
 AR/VR Utilization Stages
 Blockchain Utilization Stages
 Bigdata Utilization Stages
 Mobile Utilization Stages
 Robotics Utilization Stages
 3D Printing Utilization Stages
 ICT Code
 Financial Status

#### **Appendix 1 Implications**

• The use of augmented reality (AR) or virtual reality (VR) in the sales stage has greatly boosted the probability of AI adoption

• Robotics and 3D printing utilization had a negative impact on the probability of AI adoption across multiple stages of use.

• Firms with higher annual depreciation of machinery and equipment show a significantly greater probability of adopting AI. An increase of about \$350 million in annual depreciation of machinery and equipment raises the probability of AI adoption by 16.3 %p for a firm with average depreciation.

• Firms with higher total wages show a significantly greater probability of adopting AI. An increase of about \$240 million in total wages raises the probability of AI adoption by 12.7 %p for a firm with average total wages.





#### **Appendix 2 Implications**

- The standard deviation is higher for AI adopters (3.02 vs. 2.72), indicating more dispersion in intangible asset levels among adopters.
- The maximum value among adopters (16.16) exceeds that of non-adopters (14.56), reinforcing the pattern that the most intangible-capital-rich firms are also the ones adopting AI.
- This evidence supports the hypothesis that intangible assets—such as R&D, software, design, and organizational capital—serve as enabling conditions for AI adoption.
- Firms with greater intangible resources likely have better absorptive capacity, more advanced digital infrastructure, and a more innovative-oriented management structure, all of which facilitate AI implementation.





#### **Appendix 2 Implications**

- Firms that have adopted AI (ADOP\_AI = 1) have a higher average firm size, with a mean InSLAB of 5.75, compared to 5.21 among non-adopters (ADOP\_AI = 0).
- This corresponds to a substantively meaningful gap: using the exponential function, the average number of employees is roughly 316 (exp(5.75)) for adopters versus 184 (exp(5.21)) for nonadopters.
- Furthermore, the standard deviation among adopters is larger (1.61 vs. 1.21), suggesting greater variability in firm size among AI adopters, which may include both large conglomerates and emerging tech-intensive SMEs.
- The minimum and maximum values also indicate that the largest firms (in terms of workforce) are predominantly among AI adopters, with a maximum log of number of employees of 11.73 ( $\approx$  124,000 employees) versus 10.59 ( $\approx$  39,800 employees) for non-adopters.
- These patterns highlight the importance of scale effects in AI adoption: larger firms are not only more capable of adopting AI but are also more likely to do so, likely due to greater financial capacity, infrastructure, and technical workforce. 52



#### **Appendix 2 Implications**

- The density plot shows a noticeable rightward shift in the firm size (= number of employees) distribution for AI-adopted firms, indicating that the probability mass is concentrated among larger firms, not only in mean but across the entire distribution.
- Al-adopted firms display greater dispersion in firm size, suggesting that while adoption is more common among larger firms, a subset of mid-sized or smaller firms with advanced capabilities also engage in Al transformation.
- The density function for non-use of AI firms are more peaked and left-skewed, highlighting a concentration of smaller firms that may lack the capacity or strategic incentive to invest in AI.
- These distributional differences support the notion that AI diffusion is unevenly distributed across the firm size spectrum, reinforcing the need for differentiated policy interventions targeting Small & Medium-sized Enterprises.



Figure 4. Heatmap of Technology Co-Adoption

#### **Appendix 2 Implications**

- The heatmap shows that Big Data and Cloud tend to co-occur more frequently, suggesting these technologies are often implemented as part of integrated digital strategies rather than in isolation.
- The weak co-adoption signals between AI and IoT may reflect limited technical interoperability or lower organizational readiness for real-time sensor-AI integration in the Korean context.
- The generally low correlation values across technologies point to a fragmented pattern of digital adoption, where firms adopt technologies selectively based on specific needs or resource constraints, rather than through a unified transformation roadmap.
- The heatmap highlights opportunities for cross-technology synergies, indicating that firms adopting one digital technology may benefit from targeted incentives or support to extend adoption into complementary areas like AI.

#### **Appendix 2 Implications**

• Firms that adopt AI have significantly larger intangible assets, with an average log of Intangible Assets of 7.55 ( $\approx$  1,905 in natural scale) compared to 6.39 ( $\approx$  598) for non-adopters, indicating 3.8 times more intangible assets on average, highlights the critical role of intangible resources like R&D, software, and organizational capital in supporting AI adoption.

• AI adopters also tend to be significantly larger, with an average log of the number of workers of 5.75 ( $\approx$  316 employees) versus 5.21 ( $\approx$  184 employees) for non-adopters, reinforcing the importance of scale effects in AI adoption.

• The Kolmogorov-Smirnov (K-S) test confirms that the firm size distribution for adopters is statistically larger than that for non-adopters (K-S statistic = 0.154, p = 0.000), suggesting that AI adoption is not just a function of average size but reflects a broader structural difference.

• AI adoption is moderately correlated with Big Data adoption (0.2381), indicating that data infrastructure is a critical enabler of AI. In contrast, the weak correlations with IoT (0.0121) and Cloud (-0.0078) suggest that these technologies may play less central roles in AI adoption, potentially reflecting different integration strategies or technological maturity levels.