Climate Change, Firms, and Aggregate Productivity

Andrea CaggeseAndrea ChiavariSampreet S. GorayaCarolina Villegas-SanchezUPFOxfordSSEESADE

Introduction

- Climate change refers to long-term shifts in temperatures and weather patterns
- Key issue to formulate policies: predict the impact on society of future climate change.
- Our focus: quantify the effects of temperature fluctuations on productivity.
 - Studies using firm-level data from developing countries highlight negative impact of extreme temperature shocks (e.g., among others, Somanathan et al., JPE, 2021)
 - What about developed countries?
 - Through which channels? And how to quantify aggregate implications?
- This paper estimates the effect of temperature fluctuations on firm level outcomes in Italy.
 - Theoretical framework allows us to: i) Identify demand, efficiency and misallocation channels; ii) Quantify aggregate productivity losses; iii) Predict aggregate effects of future climate change, as well as its regional heterogeneity.

Introduction

- Climate change refers to long-term shifts in temperatures and weather patterns
- Key issue to formulate policies: predict the impact on society of future climate change.
- Our focus: quantify the effects of temperature fluctuations on productivity.
 - Studies using firm-level data from developing countries highlight negative impact of extreme temperature shocks (e.g., among others, Somanathan et al., JPE, 2021)
 - What about developed countries?
 - Through which channels? And how to quantify aggregate implications?
- This paper estimates the effect of temperature fluctuations on firm level outcomes in Italy.
 - Theoretical framework allows us to: i) Identify demand, efficiency and misallocation channels; ii) Quantify aggregate productivity losses; iii) Predict aggregate effects of future climate change, as well as its regional heterogeneity.

Introduction

- Climate change refers to long-term shifts in temperatures and weather patterns
- Key issue to formulate policies: predict the impact on society of future climate change.
- Our focus: quantify the effects of temperature fluctuations on productivity.
 - Studies using firm-level data from developing countries highlight negative impact of extreme temperature shocks (e.g., among others, Somanathan et al., JPE, 2021)
 - What about developed countries?
 - Through which channels? And how to quantify aggregate implications?
- This paper estimates the effect of temperature fluctuations on firm level outcomes in Italy.
 - Theoretical framework allows us to: i) Identify demand, efficiency and misallocation channels; ii) Quantify aggregate productivity losses; iii) Predict aggregate effects of future climate change, as well as its regional heterogeneity.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency, and cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency**, and **cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency**, and **cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency**, and **cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency**, and **cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- 1. Extreme temperatures, either high or low, depress firm-level output, with the negative effect of high temperatures very non-linear and convex.
- 2. Extreme temperatures **reduce efficiency**, and **cause misallocation of capital**, while labour and other variable inputs reallocate efficiently. Demand channel has negligible effects.
- 3. Substantial negative effects of future climate change, steep non-linearity:
 - 2°C increase from now to 2100 would reduce aggregate productivity by 1.8%
 - 4°C increase would reduce it by 6.4%
 - 6°C increase (SSP5-8.5 scenario) would reduce it by 14.5%
- 4. Effect driven by lower efficiency (around 60%) and higher misallocation (around 40%).
- 5. Substantial heterogeneity across regions, exacerbates inequality.

- Macro: Desmet and Rossi-Hansberg (2015); Conte et al. (2021); Cruz and Rossi-Hansberg (2021); Desmet et al. (2021), Rudik et al. (2021); Krusell and Smith (2022); Barrage and Nordhaus (2023); Bilal and Rossi-Hansberg (2023)
- Micro: Zhang et al. (2018); Adhvaryu et al. (2020); Somanathan et al. (2021); Colmer (2021); Custodio et al. (2021); Albert et al. (2022); Cascarano et al. (2022)
- Micro-to-Macro: Hsieh and Klenow (2009); Gopinath et al. (2017); Baqaee and Farhi (2020); Sraer and Thesmar (2020); Bau and Matray (2023)

Framework

• Output Y is a CES aggregate of M firms:

$$Y = \left(\sum_{i=1}^{N} \left(e^{d_i(T_{g(i)})} Y_i\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- $e^{d_i(T_g(i))}$ is a temperature-dependent demand wedge for firm i in grid-cell g
- Grid-cells are the finest geographical unit for which we have data on temperatures

• The production function is Cobb-Douglas in inputs $\mathcal{X} \equiv \{K, L, M\}$:

$$Y_i = e^{\mathbf{z}_i(T_{g(i)})} \prod_{X \in \mathcal{X}} X_i^{\alpha^X}, \quad \text{with} \quad \sum_{X \in \mathcal{X}} \alpha^X = 1$$

- $e^{z_i(T_{g(i)})}$ is a temperature-dependent productivity wedge for firm i in grid-cell g
- In our empirical application: K=capital, L=labour cost, M=cost of variable inputs.

- Given demand and supply primitives, the problem of the firms can be cast as

$$\begin{split} \Pi_i &= \max_{\{P_i,Y_i\}} P_i Y_i - \mathcal{C}(Y_i) \\ \text{s.t.} \quad Y_i &= e^{(\sigma-1)d_i(T_{g(i)})} \bigg(\frac{P_i}{P}\bigg)^{-\sigma} Y \end{split}$$

where

$$\mathcal{C}(Y_i) = \min_{X} \left\{ \sum_{X \in \mathcal{X}} e^{\boldsymbol{\tau}_i^X(\boldsymbol{T}_{g(i)})} P^X X_i \quad \middle| \quad Y_i - e^{z_i(T_{g(i)})} \prod_{X \in \mathcal{X}} X_i^{\alpha^X} \right\}$$

• $e^{\tau_i^X(T_{g(i)})}$ are temperature-dependent input-specific wedges for firm i in grid-cell g

• Firm *i* sales are

$$P_i Y_i = e^{(\sigma-1)} \overbrace{d_i(T_{g(i)}) z_i(T_{g(i)})}^{\equiv \bar{z}_i(T_{g(i)})} \left(\frac{\sigma}{\sigma-1} \prod_{X \in \mathcal{X}} \left(\frac{e^{\tau_i^X(T_{g(i)})} P^X}{\alpha^X}\right)^{\alpha^X}\right)^{1-\sigma} P^{\sigma} Y$$

• Empirically testable relation between temperature and sales: mix of different effects.

• Change in Solow residual given by

$$d\log Solow \approx \frac{Y}{GDP} \times d\log TFP$$

• Change in TFP given by

$$d\log TFP = \underbrace{d\log TFP^e}_{\Delta \text{ Efficient}} + \underbrace{\left(d\log TFP - d\log TFP^e\right)}_{\Delta \text{ Allocative Efficient}}$$

Model: Aggregate TFP (2)

Change in aggregate TFP given by

 $d\log TFP = d\log TFP\left(d_i(T_{g(i)}), z_i(T_{g(i)}), \tau_i^X(T_{g(i)}); \sigma, \alpha_i^X, dT_{g(i)}\right)$

• Change in efficient TFP given by

$$d\log TFP^{e} = d\log TFP^{e} \left(\boldsymbol{d_{i}(T_{\boldsymbol{g}(i)}), \boldsymbol{z_{i}(T_{\boldsymbol{g}(i)}); \sigma, dT_{\boldsymbol{g}(i)}} \right)$$

- Challenge: Identify temperature-dependent wedges $d_i(T_{g(i)}), z_i(T_{g(i)})$ and $\tau^X_i(T_{g(i)})$

- Regression of firm-level sales on temperature shocks identifies jointly $d_i(T_{g(i)}) + z_i(T_{g(i)}) + \tau_i^X(T_{g(i)})$ (semi-parametric approach to allow for any non-linearity in these functions).
- = Regression of firm-level marginal revenue products on temperature shocks identifies $au_i^X(T_{g(i)})$.
- Comparison of tradables and non-tradable firms helps to disentangle $d_i(T_{g(i)})$ from $z_i(T_{g(i)})$.
- Firm and Sector-Year fixed effects, region time trends, region specific Great Recession and Sovereign Crisis dummies control for possible confounding factors.

- Regression of firm-level sales on temperature shocks identifies jointly $d_i(T_{g(i)}) + z_i(T_{g(i)}) + \tau_i^X(T_{g(i)})$ (semi-parametric approach to allow for any non-linearity in these functions).
- Regression of firm-level marginal revenue products on temperature shocks identifies $au_i^X(T_{g(i)})$.
- Comparison of tradables and non-tradable firms helps to disentangle $d_i(T_{g(i)})$ from $z_i(T_{g(i)})$.
- Firm and Sector-Year fixed effects, region time trends, region specific Great Recession and Sovereign Crisis dummies control for possible confounding factors.

- Regression of firm-level sales on temperature shocks identifies jointly $d_i(T_{g(i)}) + z_i(T_{g(i)}) + \tau_i^X(T_{g(i)})$ (semi-parametric approach to allow for any non-linearity in these functions).
- Regression of firm-level marginal revenue products on temperature shocks identifies $au_i^X(T_{g(i)})$.
- Comparison of tradables and non-tradable firms helps to disentangle $d_i(T_{g(i)})$ from $z_i(T_{g(i)})$.
- Firm and Sector-Year fixed effects, region time trends, region specific Great Recession and Sovereign Crisis dummies control for possible confounding factors.

- Regression of firm-level sales on temperature shocks identifies jointly $d_i(T_{g(i)}) + z_i(T_{g(i)}) + \tau_i^X(T_{g(i)})$ (semi-parametric approach to allow for any non-linearity in these functions).
- Regression of firm-level marginal revenue products on temperature shocks identifies $au_i^X(T_{g(i)})$.
- Comparison of tradables and non-tradable firms helps to disentangle $d_i(T_{g(i)})$ from $z_i(T_{g(i)})$.
- Firm and Sector-Year fixed effects, region time trends, region specific Great Recession and Sovereign Crisis dummies control for possible confounding factors.

Identification

- We need to separate the effect of temperature between
 - demand-adjusted productivity wedge $e^{\tilde{z}_i(T_{g(i)})}$
 - input-specific wedges $e^{\tau^X_i(T_{g(i)})}$
- Assume that $e^{\tilde{z}_i(T_{g(i)})}$ and $e^{\tau_i^X(T_{g(i)})}$ take the follow functional forms:

$$\begin{split} e^{\tilde{z}_i(T_{g(i)})} &\equiv e^{\tilde{z}_i + F_i^z(T_{g(i)})}, \quad \text{with} \quad Cov(\tilde{z}_i, F_i^z(T_{g(i)})) = 0 \\ e^{\tau_i^X(T_{g(i)})} &\equiv e^{\tau_i^X + F_i^X(T_{g(i)})}, \quad \text{with} \quad Cov(\tau_i^X, F_i^X(T_{g(i)})) = 0, \quad \forall X \in \mathcal{X} \end{split}$$

• We can recover the temperature-elasticity of sales from

$$p_i y_i = (\boldsymbol{\sigma} - \mathbf{1}) F_i(T_{g(i)}) - (\boldsymbol{\sigma} - 1) \left(\log \mu + \sum_{X \in \mathcal{X}} \alpha^X (p^X + \tau_i^X - \log \alpha^X) - z_i \right) + \sigma p + y$$

• Where $F_i(T_{g(i)})$ is given by

$$F_i(T_{g(i)}) \equiv \left(F_i^z(T_{g(i)}) - \sum_{X \in \mathcal{X}} \alpha^X F_i^X(T_{g(i)})\right)$$

- We can recover the temperature-elasticity of input-specific wedges $e^{\tau^X_i(T_{g(i)})}$ from

$$e^{\tau_i^X + F_i^X(T_{g(i)})} P^X \mu = \alpha^X \frac{P_i Y_i}{X_i}$$
$$= MRPX_i, \quad \forall X \in \mathcal{X}$$

• Which in logarithms is

$$mrpx_i = \boldsymbol{F_i^X(T_{g(i)})} + \tau_i^X + p^X + \log \mu, \quad \forall X \in \mathcal{X}$$

• We recover the temperature-elasticity of the demand-adjusted wedge as

$$\boldsymbol{F_i^z}(\boldsymbol{T_g(i)}) = \frac{1}{\sigma - 1} F_i(T_{g(i)}) + \sum_{X \in \mathcal{X}} \alpha^X F_i^X(T_{g(i)})$$

Data

- Firm-level data: Italian Orbis data (quasi Census)
 - Balance sheet panel data from 1999-2013
 - Approximately 1 million firms, 4.3 million observations, 75% of aggregate gross output.
- Climate data: Copernicus
 - E-OBS daily gridded $(0.1^{\circ} \times 0.1^{\circ})$ meteorological data for Europe since 1950
 - Daily data on temperature, rainfall, humidity, wind speed, pressure, ...
- Merge: using firms' postcode and grid cells' latitude and longitude (minimum distance)

Temperatures over Time and Across Space

(a) Yearly Temperature, Italy

(b) Yearly Temperatures, 1999

Empirical Analysis

Main regression

$$\mathsf{Outcome}_{it} = \sum_{\ell} \beta_{\ell} T_{g(i)t}^{\ell} + \boldsymbol{\delta' X_{it}} + \alpha_i + \gamma_{s(i)t} + \varepsilon_{it}$$

- Observation is firm i, in grid-cell g(i), and sector s(i), at year t
- β_ℓ is the coefficient of interest
- X_{it} : average rainfalls $R_{g(i)t}$, regions-time trends, Great Recession and Sovereign Debt Crisis dummies.
- α_i and $\gamma_{s(i)t}$ are firm and sector-time fixed effects
- ε_{it} clustered at grid-cell level

- For main regressor $T^{\ell}_{q(i)t}$ we follow Somanathan et al. (2021)
- Aggregate daily temp. to annual counting the number of days within different temp. bins
- We use temp. bins defined as

 $\{(-\infty, 5), [5, 15), [15, 30), [30, 35), [35, 40), [40, \infty)\}$

• Vector **T** summarizes the temp. distribution over the year

$$\mathbf{T} = \{T^1, T^2, T^3, T^4, T^5, T^6\}$$

which counts number of days within each bin

- This is calculated for every geography $g \mbox{ and year } t$

	Temperature Bins					
	$(-\infty, 0^{\circ}C]$	$(0^{\circ}C, 15^{\circ}C]$	$(15^{\circ}C, 30^{\circ}C]$	$(30^{\circ}C, 35^{\circ}C]$	$(35^{\circ}C, 40^{\circ}C]$	$(40^{\circ}C,\infty)$
Variable						
Mean	1.86	118.48	196.87	42.55	5.19	0.04
Median	0	127	192	44	3	0
Min	0	19	2	0	0	0
Max	164	284	321	95	56	10

Avg. Effect of Temperature on Firms: Sales and Inputs

Dependent Variable	Sales	Materials	Labor	Capital
Temperature Bins				
$(-\infty, 5^{\circ}C)$	-0.156***	-0.157***	-0.143***	-0.076***
	(0.031)	(0.053)	(0.034)	(0.043)
$[5^{\circ}C, 15^{\circ}C)$	0.011	0.014*	-0.000	0.007
	(0.010)	(0.014)	(0.008)	(0.009)
$[30^{\circ}C, 35^{\circ}C)$	-0.018*	-0.032**	0.001	0.005
	(0.010)	(0.016)	(0.009)	(0.012)
$[35^{\circ}C, 40^{\circ}C)$	-0.052***	-0.080***	0.008	0.004
	(0.019)	(0.031)	(0.019)	(0.021)
$[40^{\circ}C, +\infty)$	-0.842***	-0.896***	-0.421**	-0.021
	(0.223)	(0.304)	(0.196)	(0.235)
Fixed Effects	\checkmark	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark	\checkmark
Observations	4,587,926	4,635,108	3,692,934	4,260,946

Take Away: Inverted U-shaped pattern. Response of materials \approx wages > capital

Avg. Effect of Temperature: Firms on Marginal Products

Dependent Variable	MRPM	MRPL	MRPK
Temperature Bins			
$(-\infty, 5^{\circ}C)$	-0.038	0.001	-0.080*
	(0.035)	(0.027)	(0.046)
$[5^{\circ}C, 15^{\circ}C)$	0.005	-0.009	-0.010
	(0.007)	(0.007)	(0.011))
$[30^{\circ}C, 35^{\circ}C)$	0.007	-0.012*	-0.018
	(0.008)	(0.006)	(0.012)
$[35^{\circ}C, 40^{\circ}C)$	0.013	-0.023	-0.054**
	(0.016)	(0.014)	(0.024)
$[40^{\circ}\mathrm{C},+\infty)$	-0.202	-0.024	-0.610**
	(0.174)	(0.161)	(0.263)
Fixed Effects	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark
Observations	4,587,926	3,686,465	4,235,847

Take Away: Inverted U-shaped pattern. Response of MRPK > MRPL \approx MRPM

Avg. Effect of Temperature on Firms: Demand-Adjusted Productivity

- Now we can recover effect of temperatures on demand-adjusted productivities
 - We use $\sigma = 4$, implying a markup of $\approx 30\%$
 - Production function elasticities $\{\alpha^x\}_{x \in \{M,L,K\}}$ from cost shares: $\{0.53, 0.36, 0.11\}$

	Temperature Bins						
	$(-\infty,5)$	[5, 15)	[30, 35)	[35, 40)	$[40,\infty)$		
β^z_ℓ	-0.061	0.003	-0.008	-0.002	-0.358		

- Q: How to separate demand and productivity effects of temperatures?
 - Firms selling tradable goods less subject to local temperature-related demand shocks
 - Most of their demand comes from grid-cells other than theirs
 - Hence, any extra effect of temperature for non-tradables must come from demand
- Regression framework

$$\mathsf{Outcome}_{it} = \sum_{\ell} \beta_{1,\ell} T^{\ell}_{g(i)t} + \sum_{\ell} \beta_{2,\ell} T^{\ell}_{g(i)t} \times I^{NT}_{s(i)t} + \boldsymbol{\delta' X_{it}} + \alpha_i + \gamma_{s(i)t} + \varepsilon_{it}$$

- $I_{s(i)t}^{NT}$ is a dummy equal 1 if sector s is above median trade volumes in WIOT
- $\beta_{2,\ell}$ is the coefficient of interest

Het. Effect of Temperature on Firms: Demand vs Productivity (2)

Dependent Variable	Sales	Sales
Temperature Bins		
$(-\infty, 0^{\circ}C]$	-0.156***	-0.132**
$(0^{\circ}C, 15^{\circ}C]$	0.011	0.020
$(30^{\circ}C, 35^{\circ}C]$	-0.018*	-0.024*
$(35^{\circ}C, 40^{\circ}C]$	-0.052***	-0.071**
$(40^{\circ}C, +\infty)$	-0.842***	-0.866***
$\begin{array}{l} \textit{Temperature Bins} \times I_{s(i)}^{NT} \\ (-\infty, 5^{\circ} \text{C}] \\ (5^{\circ} \text{C}, 15^{\circ} \text{C}] \\ (30^{\circ} \text{C}, 35^{\circ} \text{C}] \\ (35^{\circ} \text{C}, 40^{\circ} \text{C}] \end{array}$		-0.044 -0.022 0.016 0.047
$(40^{\circ}\mathrm{C}, +\infty)$		0.069
Fixed Effects	\checkmark	\checkmark
Controls	\checkmark	\checkmark
Observations	4,587,926	4,587,926

Take Away: Non-tradables affected as tradables \rightarrow demand margin weak

Het. Effect of Temperature on Firms: Demand vs Productivity (2)

Dependent Variable	Sales	Sales
Temperature Bins	\rightarrow	\rightarrow
Temperature Bins $ imes I_{s(i)}^{NT}$		
$(-\infty, 5^{\circ}C)$		-0.044
		(0.052)
$[5^{\circ}C, 15^{\circ}C)$		-0.022
		(0.014)
$[30^{\circ}C, 35^{\circ}C)$		0.016
		(0.015)
$[35^{\circ}C, 40^{\circ}C)$		0.047
		(0.031)
$[40^{\circ}C, +\infty)$		0.069
		(0.389)
Fixed Effects	\checkmark	\checkmark
Controls	\checkmark	\checkmark
Observations	4,587,926	4,587,926

Take Away: Non-tradables affected as tradables \rightarrow demand margin weak

Aggregate Implications

• Aggregate **TFP changes** due to temperatures can be expressed as

$$\Delta \log TFP \approx \Delta \log TFP \left(\tilde{z}_i(T_{g(i)}), \tau_i^X(T_{g(i)}); \Delta T_{g(i)} \right)$$
$$= \Delta \log TFP \left(\sum_{\ell} \beta_{\ell}^{\tilde{z}} T_{g(i)}^{\ell}, \sum_{\ell} \beta_{\ell}^X T_{g(i)}^{\ell}; \Delta T_{g(i)} \right)$$

• Efficient TFP changes due to temperatures can be expressed as

$$\begin{split} \Delta \log TFP^{e} &\approx \Delta \log TFP\left(\tilde{z}_{i}(T_{g(i)}); \Delta T_{g(i)}\right) \\ &= \Delta \log TFP^{e}\left(\sum_{\ell} \beta_{\ell}^{\tilde{z}} T_{g(i)}^{\ell}; \Delta T_{g(i)}\right) \end{split}$$

• **Counterfactual:** Change in TFP due to a daily $\Delta T_{g(i)}$

Climate change and extreme temperatures: Counterfactual Distribution of Days Within Temperature Bins

				Temper	ature Bins		
		$(-\infty, 0^{\circ}C]$	$(0^{\circ}C, 15^{\circ}C]$	$(15^{\circ}C, 30^{\circ}C]$	$(30^{\circ}C, 35^{\circ}C]$	$(35^{\circ}C, 40^{\circ}C]$	$(40^{\circ}\mathrm{C}, +\infty)$
Warming Scenario	Variable						
1999-2013	Mean	1.86	118.48	196.87	42.55	5.19	0.04
	Median	0	127	192	44	3	0
	Min	0	19	2	0	0	0
	Max	164	284	321	95	56	10
1°C	Mean	1.12	104.84	198.35	51.04	9.53	0.13
	Median	0	114	193	52	6	0
	Min	0	8	4	0	0	0
	Max	153	282	326	105	64	17
2°C	Mean	0.64	91.76	198.61	58.11	15.46	0.43
	Median	0	102	193	59	11	0
	Min	0	0	11	0	0	0
	Max	140	281	326	105	70	32
4°C	Mean	0.21	67.10	197.01	65.51	32.55	2.614
	Median	0	78	194	65	32	1
	Min	0	0	31	0	0	0
	Max	111	283	314	117	103	52

Aggregate Productivity Loss

- Decompose the total aggregate productivity loss due to temperatures into
 - 1. An efficient component
 - 2. A misallocation component
- Look at different warming scenarios: 1°C, 2°C (baseline), 4°C. Also consider 6°C (SSP5-8.5 scenario) and 8°C.

	Aggregate Productivity Loss						
	$\Delta Total$ $\Delta Efficient$ $\Delta Misallocation$						
$1^{\circ}C$	0.8%	0.5%	0.3%				
$2^{\circ}C$	1.8%	1.0%	0.8%				
$4^{\circ}C$	6.4%	3.7%	2.7%				

Comparison w.r.t. other papers: 👄

Take Away: (1) substantial losses, (2) losses convex in temp., (3) misallocation important

Regional Productivity Losses for 2°**C Warming Scenario**

Conclusion

Conclusion

- We propose a structural framework to:
 - Disentangle different channels of climate change
 - Understand the aggregate effects on TFP
- · We document causal link between climate change and firm outcomes
 - We uncover an inverted U-shaped patter
 - Important heterogeneity across firms
- Quantify aggregate productivity implications of climate change
- Work in progress
 - Adaptation effects
 - Sources of efficiency losses
 - Extend to other European countries

Appendix: Aggregate TFP

Change in aggregate TFP given by

$$\begin{split} \Delta \log TFP &\approx \sum_{i=1}^{N} \lambda_i \left(e^{\hat{z}_i(T_g(i))}, e^{\tau_i^X(T_g(i))} \right) \sum_{X \in \mathcal{X}} \frac{\alpha^X}{e^{\tau_i^X(T_g(i))}} \Omega_t^X \left(e^{\hat{z}_i(T_g(i))}, e^{\tau_i^X(T_g(i))} \right) \\ &\times \left[\left(\sigma \frac{e^{\tau_i^X(T_g(i))}}{\Omega_t^X \left(e^{\hat{z}_i(T_g(i))}, e^{\tau_i^X(T_g(i))} \right)} - (\sigma - 1) \right) \left(\frac{\partial \hat{z}_i(T_g(i))}{\partial T_{g(i)}} - \sum_{X \in \mathcal{X}} \alpha^X \frac{\partial \tau_i^X(T_{g(i)})}{\partial T_{g(i)}} \right) + \frac{\partial \tau_i^X(T_{g(i)})}{\partial T_{g(i)}} \right] \Delta T_{g(i)} \end{split}$$

• Change in efficient TFP given by

$$\Delta \log TFP^e \approx \sum_{i=1}^N \lambda_i^e \left(e^{\tilde{z}_i(T_{g(i)})} \right) \frac{\partial \tilde{z}_i(T_{g(i)})}{\partial T_{g(i)}} \Delta T_{g(i)}$$

Het. Effect of Temperature on Firms: Demand vs Productivity (2)

Dependent Variable	Sales	Sales
Temperature Bins		
$(-\infty, 5^{\circ}C)$	-0.156***	-0.132**
	(0031)	(0.041)
$[5^{\circ}C, 15^{\circ}C)$	0.011	0.020
	(0.010)	(0.013)
$[30^{\circ}C, 35^{\circ}C)$	-0.018*	-0.024*
	(0.010)	(0.014)
$[35^{\circ}C, 40^{\circ}C)$	-0.052***	-0.071**
	(0.019)	(0.028)
$[40^{\circ}C, +\infty)$	-0.842***	-0.866***
	(0.223)	(0.294)
Temperature Bins $ imes I_{s(i)}^{NT}$	Œ	
Fixed Effects	\checkmark	\checkmark
Controls	\checkmark	\checkmark
Observations	4,587,926	4,587,926

Take Away: Non-tradables affected as tradables \rightarrow demand margin weak

Comparison with Nordhaus Program

(a) Productivity Loss Across Models

(b) Diff. in Productivity Loss Across Models

Regional Productivity Losses for $1^{\circ}C$ and $4^{\circ}C$ Warming Scenario

