Sustainability or Greenwashing: Evidence from the Asset Market for Industrial Pollution

Ran Duchin (BC) Janet Gao (Georgetown) Qiping Xu (UIUC)

Discussion by Clement Mazet-Sonilhac (Bocconi)

3rd FinPro Workshop Rome, June 8-9 2023

1/26

Motivation

Average Deal Value, Divestitures

- Pressures from activists, regulators, and governments → divestment of polluting assets
 - Broccardo et al. 2020, Oehmke and Opp 2022, Edmans et al. 2022, Green and Vallee 2022

Motivation

Average Deal Value, Divestitures

- Pressures from activists, regulators, and governments → divestment of polluting assets
 - Broccardo et al. 2020, Oehmke and Opp 2022, Edmans et al. 2022, Green and Vallee 2022
- This trend reflects mounting concerns about climate change, but how effective such divestment is?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

· A firm facing environmental pressures divest polluting plants

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

- A firm facing environmental pressures divest polluting plants
- And redraws its boundary in a manner perceived as environmentally friendly

"Sadly, selling off assets or shares by itself **does nothing to save the planet**, because someone else will buy them." *The Wall Street Journal, January 23rd, 2022.*

<ロ> (四) (四) (三) (三) (三)

"Divesting can take away the option of engaging high-carbon companies to do better." ESG Clarity, May 13th, 2022

(日) (월) (분) (분)

æ

This paper

- Combines data about 900 divestitures of polluting plants with plants' toxic emissions

(ロ) (部) (E) (E)

- Studies how pollution levels change around the transfer of ownership
- Compares the buyers and sellers of polluting plants
- Estimate the gains from trading these plants

Best-case scenario

 Divestitures of polluting assets reallocate assets to owners likely to treat pollution (Magill et al. 2015; Broccardo et al. 2020)

(日) (월) (분) (분)

æ

Best-case scenario

 Divestitures of polluting assets reallocate assets to owners likely to treat pollution (Magill et al. 2015; Broccardo et al. 2020)

<ロ> (四) (四) (三) (三) (三)

æ

Worst-case scenario

• Divestitures of polluting assets respond to external environmental pressures by transferring ownership from firms that face stronger pressures to firms that face weaker pressures

Worst-case scenario

• Divestitures of polluting assets respond to external environmental pressures by transferring ownership from firms that face stronger pressures to firms that face weaker pressures

Worst-case scenario

• Divestitures allow sellers to gain from offloading polluting assets to less scrutinized firms without having a real impact on pollution levels

Key findings: worst-case scenario!

- No change in pollution (or pollution reduction efforts) at divested plants
- No reduction in the pollution levels of sellers' or buyers' other plants
- Sellers are mote likely to divest an asset (i) if it pollutes more and (ii) after an ESG risk exposure
- Buyers are (i) more likely to be **private**, (ii) less likely to be covered by **ESG** ratings, and (iii) have business ties with the sellers
- Sellers enjoy better ESG ratings following a divestment, and are less exposed to regulatory pressure

Comments

- Fantastic paper!
 - Important and ambitious question
 - Gather novel data on plant divestments
 - Very rich and polished paper
- Challenges and room for improvement:
 - 1 What are we measuring exactly?
 - 2 Missing pieces of the puzzle: innovation, indirect emissions, preferences, funding costs
 - 3 Minor comments

- Motivation of the paper seems to be about climate change and carbon emissions
 - Empirical exercise does not perfectly align with the motivation

- Motivation of the paper seems to be about climate change and carbon emissions
 - Empirical exercise does not perfectly align with the motivation
- Main specifications are at the plant × chemical level
 - 770 chemicals covered by the TRI Program
 - These chemicals are not related to climate change : (i) cancer or other chronic human health effects and (ii) other environmental effects (affecting biodiversity)

- Motivation of the paper seems to be about climate change and carbon emissions
 - Empirical exercise does not perfectly align with the motivation
- Main specifications are at the plant × chemical level
 - 770 chemicals covered by the TRI Program
 - These chemicals are not related to climate change : (i) cancer or other chronic human health effects and (ii) other environmental effects (affecting biodiversity)
- The authors plug all these chemicals j in the same regression :

 $Y_{i,j,t} = \beta \cdot \mathsf{Divested}_i \times \mathsf{Post}_{i,t} + \alpha_{i,j} + \tau_{j,t} + \varepsilon_{i,j,t}$

- The β is therefore hard to interpret \rightarrow not clear what is happening at plant-level
 - What is the unit of β ? Pound of what?
 - If cancer-causing emissions (e.g., DDT) increase while environmentally damaging emissions decrease, could we still get a zero?

- Solution #1: run plant-level regressions, aggregating or weighting each chemical by its toxicity (RSEI data)
 - Only done in Table IA.3 Panels C to F of the Internet Appendix, w/o time varying plant controls (e.g., sales from NETS)
 - Fundamental question: can you compare the toxicity of DDT and Benzene?

The RSEI data (Source: EPA)

7. Focus on long-term health effects. The <u>RSEI model only addresses chronic human toxicity</u> (cancer and non-cancer effects, such as developmental toxicity, reproductive toxicity, neurotoxicity, etc.) associated with long-term exposure. It does not address acute health effects associated with short-term, periodic exposures to higher levels of these same chemicals, and does not address ecological effects.

- Solution #1: run plant-level regressions, aggregating or weighting each chemical by its environmental toxicity (RSEI data)
 - Only done in Table IA.3 Panels C to F of the Internet Appendix, w/o time varying plant controls (e.g., sales from NETS)
 - Can you compare the environmental toxicity of CO_2 and Tetrafluoroethylene?
- Solution #2: group chemicals into broad categories (33 according to TRI, or even broader : human health effects vs. environmental effects) and run split regressions for each category at plant-level
- Solution #3: add the GhG emissions (GHGRP data) (CO₂, CH₄, N₂O) and run regressions for at plant-level for these chemicals only

Comment 1: What are we measuring? (cont'd)

• Pollution measures: (i) total pollution (total toxic emissions) and (ii) pollution intensity

Comment 1: What are we measuring? (cont'd)

- Pollution measures: (i) total pollution (total toxic emissions) and (ii) pollution intensity
 - Pollution intensity (p. 3): ratio of chemical's toxic release to cumulative chemical production
 - Pollution intensity (p. 9): *dividing each chemical's toxic emission by its production ratio (quantity based measure of output growth)*
- You need to help the (non-expert) reader understanding better the rationale behind this key measure of your paper

Comment 1: What are we measuring? (cont'd)

- Pollution measures: (i) total pollution (total toxic emissions) and (ii) pollution intensity
 - Pollution intensity (p. 3): ratio of chemical's toxic release to cumulative chemical production
 - Pollution intensity (p. 9): *dividing each chemical's toxic emission by its production ratio (quantity based measure of output growth)*
- You need to help the (non-expert) reader understanding better the rationale behind this key measure of your paper
- Naive solution: why not to scale (or control) by number of employees or total sales at plant level using the NETS data?
 - Important as sales and acquisitions might have an impact on productivity, total production, labor, etc.

Comment 1: How are we measuring? (cont'd)

- All the main regressions are static DiD with staggered treatment
- Large recent literature about this design: De Chaisemartin and d'Haultfoeuille (2020), Borusyak et al. (2021), Callaway and Sant'Anna (2021), Goodman-Bacon (2021), Imai and Kim (2021), Sun and Abraham (2021)

Comment 1: How are we measuring? (cont'd)

- All the main regressions are static DiD with staggered treatment
- Large recent literature about this design: De Chaisemartin and d'Haultfoeuille (2020), Borusyak et al. (2021), Callaway and Sant'Anna (2021), Goodman-Bacon (2021), Imai and Kim (2021), Sun and Abraham (2021)
- \rightarrow Recommendation: dynamic DiD because static β might be biased (Borusyak et al., 2021)
 - Allows to :
 - check for pre-trends
 - consider the slowly moving process of pollution reduction
 - clearly define a time window for analysis : [-5; +5]

Comment 1: How are we measuring? (cont'd)

• The authors do not specify what is the estimating sample but if one assumes it's 2000-2020, so some plants will be treated for 19 years and some others (a lot!) for less than 2 years.

Average Deal Value, Divestitures

Comment 2: Missing pieces?

 A key result is that sellers do not reduce toxic emissions after divesting, do not invest in green plants (subject to all previous comments) → Green-washing

Comment 2: Missing pieces?

- A key result is that sellers do not reduce toxic emissions after divesting, do not invest in green plants (subject to all previous comments) → Green-washing
- What about green innovation of both sellers and buyers (Acemoglu et al., 2012, Aghion et al., 2016, Calel and Dechezlepretre, 2016, Bolton et al., 2023).

 $\rightarrow~$ Innovation might have a long-term effect on pollution levels. Use the US-PTO data?

Comment 2: Missing pieces?

- A key result is that sellers do not reduce toxic emissions after divesting, do not invest in green plants (subject to all previous comments) → Green-washing
- What about green innovation of both sellers and buyers (Acemoglu et al., 2012, Aghion et al., 2016, Calel and Dechezlepretre, 2016, Bolton et al., 2023).

 $\rightarrow~$ Innovation might have a long-term effect on pollution levels. Use the US-PTO data?

• What about indirect emissions? The paper measures direct emissions (scope 1) but not scope 2-3 emissions, so part of the pollution reduction efforts might be unobserved.

A policy implication of our findings is that regulators and ESG ratings should consider Scope 3 pollution, that is, pollution generated by assets along the firm's value chain such as suppliers and strategic partners. This can prevent ESG-rating arbitrage through asset transfers along a firm's value chain.⁵

Comment 2: Missing pieces (cont'd)

- Last interesting channel might be finance :
 - Capital structure of buyers and sellers? Does it impact the ability to invest in pollution reducrtion technologies?
 - Does selling (buying) off dirty asset lower (increase) the cost of capital of sellers (buyers)?
 - For buyers especially, that could be an important mechanism leading to pollution reduction

Minor comments

- Both divestment and green-washing scrutiny increase after COP-21 (2015). Could you do a special focus on this period? And what about the Trump election effect?
- Subscript *i* in specification 1 is misleading as the shock is at plant-level and not plant × chemicals level (cf. Equation above)
- Pollution intensity definition changes along the paper
- Descriptive statistics about the average number of chemicals per plant would be useful
- RepRisk data : within environmental events, what share is climate change-related compared to other environmental events?
- Explaining more in depth the RSEI score would be helpful
- Why BERT and not FinBERT Could you give detail about your training-validation-test sample for the calibration of BERT, and the performance of the model over the validation and test samples
- Would be useful to see the dynamic DiD at plant level on sales and number of employees

Conclusion

Amazing paper!

I recommend everyone to read it Hope my comments will be helpful