Climate, Amenities and Banking: El Niño in the US

Filippo De Marco Nicola Limodio

Bocconi University

FINPRO

June 2023

Climate and Banking

Climate and Banking

Physical risk from weather events relevant for financial institutions

Policy makers want to assess banks' preparedness to manage climate risk (e.g. climate stress testing)

Climate and Banking

Physical risk from weather events relevant for financial institutions

Policy makers want to assess banks' preparedness to manage climate risk (e.g. climate stress testing)

Limited evidence on physical climate risk except for natural disasters (Cortes and Strahan, 2017; Ouazad and Kahn, 2022; Nguyen et al., 2022)

Government intervention and insurance after disasters complicate analysis. Impact of non-destructive climate shocks not well understood

Our Contribution

Propose and test a new mechanism:

climate shocks \Rightarrow natural amenities \Rightarrow house prices \Rightarrow mortgages

Our Contribution

Propose and test a new mechanism:

climate shocks \Rightarrow natural amenities \Rightarrow house prices \Rightarrow mortgages

Exploit a recurring natural phenomenon: El Niño

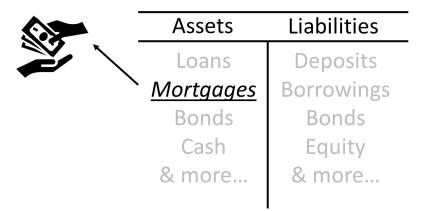
El Niño is an unpredictable atmospheric phenomenon with heterogeneous impact on temperatures across US regions

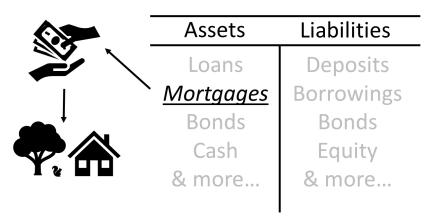
Our Contribution

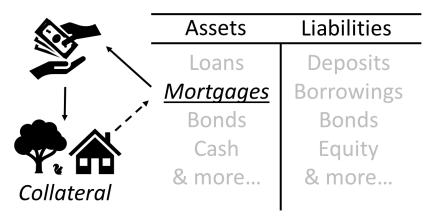
Propose and test a new mechanism:

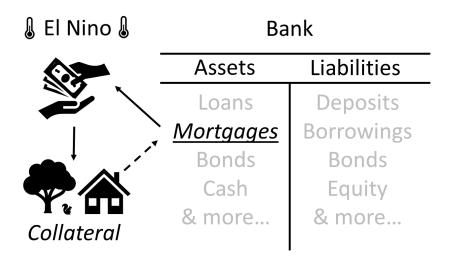
climate shocks \Rightarrow natural amenities \Rightarrow house prices \Rightarrow mortgages

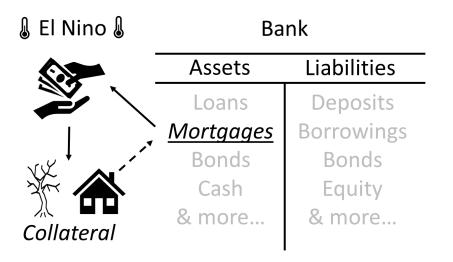
Exploit a recurring natural phenomenon: El Niño

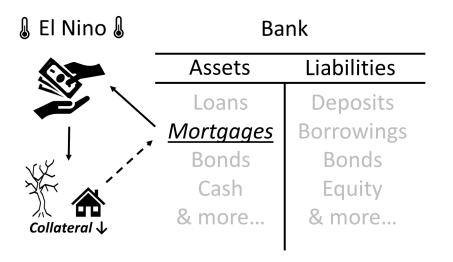

El Niño is an unpredictable atmospheric phenomenon with heterogeneous impact on temperatures across US regions

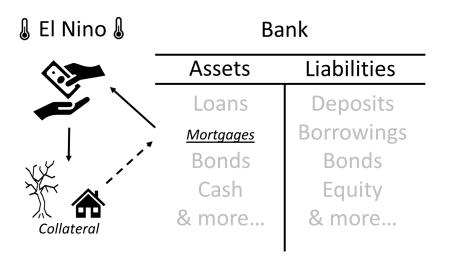

(Focus on short-term fluctuations, not long-term)

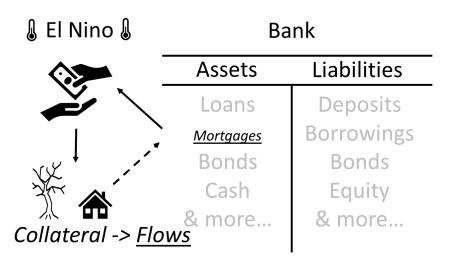


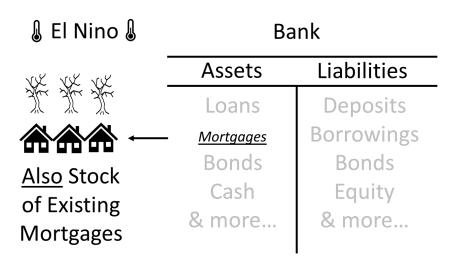

Bank Liabilities **Assets**

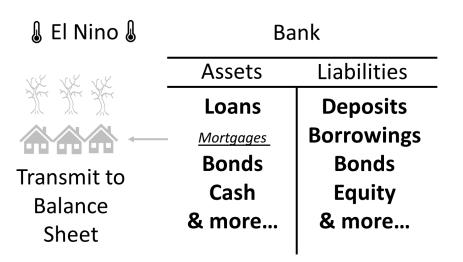

Assets	Liabilities
Loans	Deposits
Mortgages	Borrowings
Bonds	Bonds
Cash	Equity
& more	& more











We study how a climate shock affects the banking system through:

County climate

- County climate
- County house prices and mortgages

- County climate
- 2 County house prices and mortgages
- Natural Amenities

- County climate
- Ounty house prices and mortgages
- Natural Amenities
- Bank-level analysis

- County climate
- County house prices and mortgages
- Natural Amenities
- Bank-level analysis
- Demand vs supply

- County climate
- 2 County house prices and mortgages
- Natural Amenities
- Bank-level analysis
- Demand vs supply

- Ounty climate → validate climate (+ not disasters)
- County house prices and mortgages
- Natural Amenities
- Bank-level analysis
- Demand vs supply

- lacktriangle County climate o validate climate (+ not disasters)
- $oldsymbol{0}$ County house prices and mortgages ightarrow heterogeneous effects
- Natural Amenities
- Bank-level analysis
- Demand vs supply

- Ounty climate → validate climate (+ not disasters)
- $oldsymbol{\circ}$ County house prices and mortgages o **heterogeneous effects**
- Natural Amenities → worsen when temperatures ↑
- Bank-level analysis
- Demand vs supply

- Ounty climate → validate climate (+ not disasters)
- $oldsymbol{\circ}$ County house prices and mortgages ightarrow heterogeneous effects
- Natural Amenities → worsen when temperatures ↑
- lacktriangledown Bank-level analysis o aggregate effects on balance sheet
- Demand vs supply

- Ounty climate → validate climate (+ not disasters)
- $oldsymbol{\circ}$ County house prices and mortgages ightarrow heterogeneous effects
- Natural Amenities → worsen when temperatures ↑
- lacktriangledown Bank-level analysis o aggregate effects on balance sheet
- Obligation
 Demand vs supply → bank factors are key

- Ounty climate → validate climate (+ not disasters)
- $oldsymbol{\circ}$ County house prices and mortgages o **heterogeneous effects**
- **3** Natural Amenities o worsen when temperatures \uparrow
- lacktriangledown Bank-level analysis o aggregate effects on balance sheet
- **5** Demand vs supply \rightarrow bank factors are key
- lacktriangledown A LASSO analysis of climate resilience ightarrow **not today**

Literature: Climate Change & Finance

- Climate risk priced in asset prices: Baldauf et al., 2020; Engle et al. 2020; Painter, 2020; Bolton and Kacperczyk, 2021, 2022; Giglio et al. 2021; Goldsmith-Pinkham et al., 2021; Acharya et al., 2022
- Banks and natural disasters: Cortés and Strahan, 2017; Ouazad and Kahn, 2019; Nguyen et al. 2022; Blickle et al, 2022; Sastry, 2022
- Banks and transition risk: Ivanov et al., 2022; Kacperczyk and Peydro, 2022; Oehmke and Opp 2022; Correa et al., 2022, Degryse et al. 2023a,b; Giannetti et al., 2023; Accetturo et al., 2022
- El Niño and other outcomes: Brunner, 2002; Hsiang et al., 2011; Novy-Marx, 2014; Dingel et al., 2019

Identification Strategy

A Recurring Natural Experiment

We study the effects of **El Niño** on banking in the US. Why ideal?

A Recurring Natural Experiment

We study the effects of **El Niño** on banking in the US. Why ideal?

- Exogenously determined with respect to US climate
 - ▶ unusually ↑ temperatures in the Equatorial Pacific

A Recurring Natural Experiment

We study the effects of **El Niño** on banking in the US. Why ideal?

- Exogenously determined with respect to US climate
 - ▶ unusually ↑ temperatures in the Equatorial Pacific
- Unpredictable in time series
 - ▶ irregular & "quasi-random" due to wind circulation patterns (Fedorov et al, 2003; Rojas et al, 2014)

A Recurring Natural Experiment

We study the effects of **El Niño** on banking in the US. Why ideal?

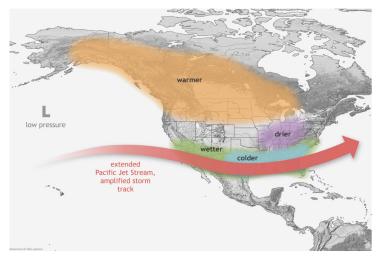
- Exogenously determined with respect to US climate
 - ▶ unusually ↑ temperatures in the Equatorial Pacific
- Unpredictable in time series
 - irregular & "quasi-random" due to wind circulation patterns (Fedorov et al, 2003; Rojas et al, 2014)
- Heterogeneous cross-section
 - $ightharpoonup \neq$ exposure across counties (warmer, colder or zero)

ENSO - El Niño Southern Oscillation

Fluctuation of the ocean-atmospheric system (wind+surface temperature) in the tropical Pacific, affecting weather worldwide

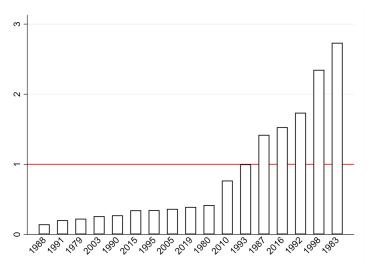
ENSO - El Niño Southern Oscillation

Fluctuation of the ocean-atmospheric system (wind+surface temperature) in the tropical Pacific, affecting weather worldwide


Increase in ocean temperature + weakening of the westward winds \Rightarrow warm water spills eastward towards Americas

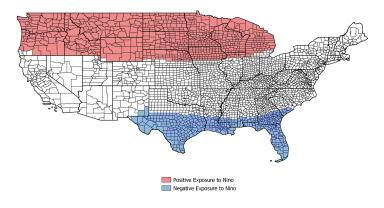
ENSO - El Niño Southern Oscillation

Fluctuation of the ocean-atmospheric system (wind+surface temperature) in the tropical Pacific, affecting weather worldwide


Increase in ocean temperature + weakening of the westward winds \Rightarrow warm water spills eastward towards Americas

Most significant impact of El Niño in US is due to a shift in the location of the jet stream (heterogeneity across US ares)

Note: Source NOAA (2021)


Oceanic temperature index (MEI v2)

Focus on the "top 5" Nino events: 1983, 1987, 1992, 1998, 2016 (\geq 1 $\!\!^{\circ}$)

Cross-Section

Note: authors map based on NOAA (2021)

Data

Sample period: 1981-2019 (bank balance sheet data from 1993)

- Temperatures: NOAA weather stations
- Natural disasters: FEMA Disaster Declarations Summary
- House Prices: county-level House Price index from Federal Housing Finance Agency (FHFA)
- Mortgage lending: Home Mortgage Disclosure Act (HMDA).
 Merged with Call Reports using the Avery file
- Natural Amenities: Natural Amenities Scale from USDA + water and soil salinity from Thorslund and van Vliet (2020) and Ivushkin et al. (2019)

Empirical Analysis and Results

We validate the climate patterns presented by NOAA

$$Y_{ct} = \alpha_c + \gamma_t + \sum_{i=P,N} \beta_i Exposure_{ic} \times El \ Nino_t + \varepsilon_{ct}$$

We validate the climate patterns presented by NOAA

$$Y_{ct} = \alpha_c + \gamma_t + \sum_{i=P,N} \beta_i Exposure_{ic} \times El \ Nino_t + \varepsilon_{ct}$$

 Y_{ct} measures temperature averages and natural disasters probability

We validate the climate patterns presented by NOAA

$$Y_{ct} = \alpha_c + \gamma_t + \sum_{i=P,N} \beta_i Exposure_{ic} \times El \ Nino_t + \varepsilon_{ct}$$

 Y_{ct} measures temperature averages and natural disasters probability

Exposure_{ic} is a dummy for positive (i = P) or negative (i = N) exposure of county c to El Niño

 ${\it El~Nino}_t=1$ if top 5 ${\it El~Ni\~no}$ year

We validate the climate patterns presented by NOAA

$$Y_{ct} = \alpha_c + \gamma_t + \sum_{i=P,N} \beta_i Exposure_{ic} \times El \ Nino_t + \varepsilon_{ct}$$

 Y_{ct} measures temperature averages and natural disasters probability

Exposure_{ic} is a dummy for positive (i = P) or negative (i = N) exposure of county c to El Niño

 $El\ Nino_t = 1$ if top 5 El Niño year

County and year fixed effects ($\alpha_c \gamma_t$). std.err. clustered at county

Table 2a: Climate and El Niño

Table 2a. Climate and El Willo					
	(1)	(2)	(3)		
Variables	Average Temperatures				
Positive Exposure _c \times	0.629*** 0.575**				
El Nino _t	(0.0163)		(0.0168)		
Negative Exposure _c \times		-0.506***	-0.362***		
El Nino _t		(0.0151)	(0.0153)		
County FE	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes		
Obs.	122,883	122,883	122,883		
Adj. R sq.	0.962	0.962	0.962		
Mean Dep. Var.	12.90	12.90	12.90		

Table 2b: Climate and El Niño

Table 25. Chinate and El Timo					
	(1)	(2)	(3)		
Variables	Probability of Disaster				
Positive Exposure _c \times	-0.0380*** -0.0189*				
El Nino _t	(0.00871)		(0.00877)		
Negative Exposure _c \times		0.135***	0.131***		
El Nino _t		(0.00913)	(0.00921)		
County FE	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes		
Obs.	127428	127428	127428		
Adj. R sq.	0.202	0.203	0.203		
Mean Dep. Var.	0.306	0.306	0.306		

2. County Lending and House Prices

Table 3: County Mortgage Lending and El Niño

,		0 -	-
	(1)	(2)	(3)
Variables		Lending	
Positive Exposure _c \times	-0.116***		-0.112***
El Nino _t	(0.0170)		(0.0173)
Negative Exposure _c \times		0.0537***	0.0274
El Nino _t		(0.0186)	(0.0190)
County FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Obs.	91,596	91,596	91,596
Adj. R sq.	0.916	0.916	0.916
Mean Dep. Var.	10.45	10.45	10.45

2. County Lending and House Prices

Table 3: County House Price Index and El Niño

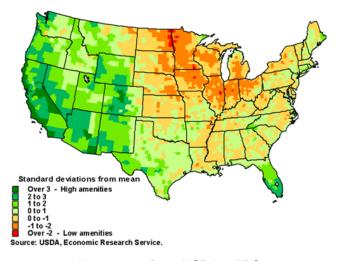
	(1)	(2)	(3)		
Variables	House Price Index				
Positive Exposure _c \times	-0.0140***		-0.0139***		
El Nino _t	(0.00252)		(0.00259)		
Negative Exposure _c \times		0.0041	0.0007		
El Nino _t		(0.0036)	(0.0037)		
County FE	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes		
Obs.	79,481	79,481	79,481		
Adj. R sq.	0.875	0.875	0.875		
Mean Dep. Var.	108.62	108.62	108.62		

Our mechanism: El Niño lowers house prices by deteriorating natural amenities (desirable characteristics of a location)

Our mechanism: El Niño lowers house prices by deteriorating natural amenities (desirable characteristics of a location)

First test: see if El Niño effects are stronger in high amenities area

Natural Amenities Scale from USDA combining six measures of climate, air, topography, and water surfaces



Our mechanism: El Niño lowers house prices by deteriorating natural amenities (desirable characteristics of a location)

First test: see if El Niño effects are stronger in high amenities area

Natural Amenities Scale from USDA combining six measures of climate, air, topography, and water surfaces

Only cross-sectional variation (not time varying)

Note: map from USDA - ERS

	(1)	(2)	(3)
Variables		House Prices	
Positive Exposure _c	-0.0140***		-0.0136***
\times El Nino _t	(0.00252)		(0.00272)
Natural Amenities _c	,	-0.0306***	-0.0296***
\times El Nino _t		(0.00227)	(0.00260)
Positive Exposure _c \times			-0.0168***
Natural Amenities $_c imes$ El Nino $_t$			(0.00494)
County FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Obs.	79,481	79,481	79,481
Adj. R sq.	0.858	0.858	0.858
Mean Dep. Var.	1.068	1.068	1.068

	(1)	(2)	(3)		
Variables	Mortgage Lending				
Positive Exposure _c	-0.116*** -0.102*				
\times El Nino $_t$	(0.0170)		(0.0213)		
Natural Amenities _c		-0.0135	-0.0191		
\times El Nino _t		(0.0135)	(0.0147)		
Positive Exposure _c \times			-0.0613*		
Natural Amenities _c × El Nino₊			(0.0346)		
Li ramo _t					
County FE	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes		
Obs.	91,596	91,596	91,596		
Adj. R sq.	0.916	0.916	0.916		
Mean Dep. Var.	10.47	10.47	10.47		

Hypothesis: value of natural amenities decreases in El Niño years

Need time-varying measure: use salinity of soil and water

Hypothesis: value of natural amenities decreases in El Niño years

Need time-varying measure: use salinity of soil and water

Key input of natural amenities. A stable amount of salt in the soil helps vegetation grow and provides micro-nutrients to plants

Rising temperatures strengthen water evaporation, which increases the presence of salt in the soil, leading to aridification

Hypothesis: value of natural amenities decreases in El Niño years

Need time-varying measure: use salinity of soil and water

Key input of natural amenities. A stable amount of salt in the soil helps vegetation grow and provides micro-nutrients to plants

Rising temperatures strengthen water evaporation, which increases the presence of salt in the soil, leading to aridification

Use data on both water (Thorslund and van Vliet, 2020) and soil salinity (Ivushkin et al., 2019)

	(1)	(0)	(2)	(4)	/ E\	(6)
	(1)	(2)	(3)	(4)	(5)	(6)
Variables		Water Salinit	ty		Soil Salinity	
Pos Exp_c	0.134***		0.0809***	0.0413***		0.0345***
×El Ninot	(0.029)		(0.026)	(0.004)		(0.004)
Neg Exp_c	` ,	-0.395***	-0.374* [*] *	` ′	-0.054***	-0.046***
×El Nino _t		(0.120)	(0.121)		(0.008)	(800.0)
County FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Obs.	53,838	53,838	53,838	21,756	21,756	21,756
Adj. R sq.	0.724	0.724	0.724	0.741	0.741	0.741
Mean Dep. Var.	1.045	1.045	1.045	0.160	0.160	0.160

Do the county effects aggregate at bank-level?

$$Y_{bt} = \alpha_b + \gamma_t + \beta \; Bank \; Exposure_b \times El \; Nino_t + \varepsilon_{bt}$$

Do the county effects aggregate at bank-level?

$$Y_{bt} = \alpha_b + \gamma_t + \beta \; Bank \; Exposure_b \times El \; Nino_t + \varepsilon_{bt}$$

 Y_{bt} are bank-level balance sheet characteristics (loans, deposits etc)

$$Bank\ Exposure_b = \sum_c Exposure_c \times Share_{bc}$$

Do the county effects aggregate at bank-level?

$$Y_{bt} = \alpha_b + \gamma_t + \beta \; Bank \; Exposure_b \times El \; Nino_t + \varepsilon_{bt}$$

 Y_{bt} are bank-level balance sheet characteristics (loans, deposits etc)

$$Bank\ Exposure_b = \sum_c Exposure_c imes Share_{bc}$$

Bank and year fixed effects ($\alpha_b \gamma_t$). std.err clustered at bank level

Table 4: Bank level effects of El Niño

rable 1. Ballik level ellects of El Tillie				
	(1)	(2)	(3)	
Variables	Loans	Deposits	Assets	
Pank Evenagura V El Nina	-0.0133***	-0.0087**	-0.0089**	
Bank Exposure _b × El Nino _t	(0.0050)	(0.0038)	(0.0035)	
Bank FE	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	
Obs.	85,616	85,616	85,616	
Adj. R sq.	0.911	0.930	0.945	
Mean Dep. Var.	11.76	12.15	12.32	

Table 5: The Transmission of El Niño on Bank Lending

			. 0
	(1)	(2)	(3)
Variables	Real	Commercial and	Consumer
Variables	Estate	Industrial	Lending
Bank Exposure _b × El Nino _t	-0.0101*	-0.0135**	0.00208
Bank Exposure _b \times Envino _t	(0.00580)	(0.00588)	(0.00680)
Bank FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Obs.	85,802	85,540	85,536
Adj. R sq.	0.921	0.888	0.877
Mean Dep. Var.	11.41	9.791	8.844

Decline in lending and house prices at county level could be due to demand and/or supply

Simple test: see if bank or county exposure matters for bank-county lending controlling for county-year or bank-year FE

Decline in lending and house prices at county level could be due to demand and/or supply

Simple test: see if bank or county exposure matters for bank-county lending controlling for county-year or bank-year FE

$$Y_{cbt} = \alpha_{ct} + \gamma_{bt} + \sum_{i=b,c} \sum_{j=P,N} \beta_{ij} Exposure_{ij} \times Nino_t + \varepsilon_{cbt}$$

Decline in lending and house prices at county level could be due to demand and/or supply

Simple test: see if bank or county exposure matters for bank-county lending controlling for county-year or bank-year FE

$$Y_{cbt} = \alpha_{ct} + \gamma_{bt} + \sum_{i=b,c} \sum_{j=P,N} \beta_{ij} Exposure_{ij} \times Nino_t + \varepsilon_{cbt}$$

 Y_{cbt} stands for HMDA lending from b in c at t

Decline in lending and house prices at county level could be due to demand and/or supply

Simple test: see if bank or county exposure matters for bank-county lending controlling for county-year or bank-year FE

$$\textit{Y}_{\textit{cbt}} = \alpha_{\textit{ct}} + \gamma_{\textit{bt}} + \sum_{\textit{i} = \textit{b,c}} \sum_{\textit{j} = \textit{P,N}} \beta_{\textit{ij}} \textit{Exposure}_{\textit{ij}} \times \textit{Nino}_{\textit{t}} + \varepsilon_{\textit{cbt}}$$

 Y_{cbt} stands for HMDA lending from b in c at t

Exposure_{ij} - dummy for positive (negative) bank b or county c

Decline in lending and house prices at county level could be due to demand and/or supply

Simple test: see if bank or county exposure matters for bank-county lending controlling for county-year or bank-year FE

$$\textit{Y}_{\textit{cbt}} = \alpha_{\textit{ct}} + \gamma_{\textit{bt}} + \sum_{\textit{i} = \textit{b,c}} \sum_{\textit{j} = \textit{P,N}} \beta_{\textit{ij}} \textit{Exposure}_{\textit{ij}} \times \textit{Nino}_{\textit{t}} + \varepsilon_{\textit{cbt}}$$

 Y_{cbt} stands for HMDA lending from b in c at t

 $Exposure_{ij}$ - dummy for positive (negative) bank b or county c

Alternatively: bank-year (γ_{bt}) or county-year (α_{bt}) fixed effects

	(1)	(2)	(3)	
Variables	Log(Mortgage Lending)			
Positive Bank Exposure _b \times	-0.217***	-0.240***		
El Nino _t	(0.075)	(0.079)		
$NegativeBankExposure_b \times$	0.004	0.017		
El Nino _t	(0.053)	(0.052)		
Positive County Exposure _c \times	-0.115***		0.034	
El Nino _t	(0.040)		(0.030)	
Negative County Exposure _c \times	-0.001		0.002	
El Nino _t	(0.024)		(0.023)	
Bank FE	Yes	Yes		
County FE	Yes		Yes	
Year FE	Yes			
Bank imes Year FE			Yes	
County $ imes$ Year FE		Yes		
Obs.	2,409,405	2,409,405	2,409,405	

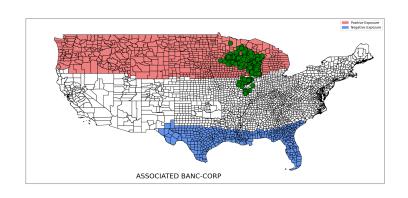
Table 7: County Exposure, Bank Exposure and El Niño					
	(1)	(2)			
Variables	L	ending			
Positive Bank Exposure _b ×	-0.224**	-0.250***			
El Nino _t	(0.113)	(0.0977)			
County	Exposed	Non-Exposed			
Bank FE	Yes	Yes			
County $ imes$ Year FE	Yes	Yes			
Obs.	739,025	1,665,920			

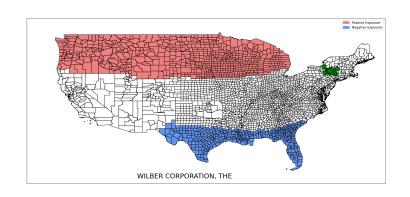
Additional

- 1 A "Placebo": La Niña La Niña
- Event Study Specification Event
- Clustering at state or spatially Clustering
- Openand and Supply using CRA data CRA
- Including all Niños through MEI
- Niño and Precipitation Precipitations

Concluding Remarks

We study the financial transmission of a climate shock


New mechanism: amenities, house prices & mortgage lending


Banks with lower operating fixed costs are more climate-resilient

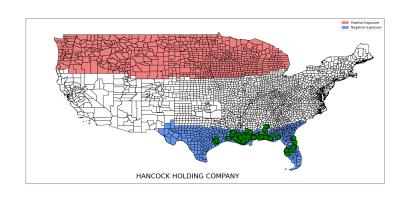
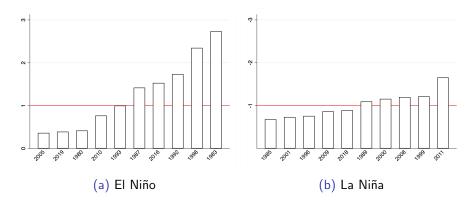

Appendix

Table 1: Summary Statistics						
	(1)	(2)	(3)	(4)	(5)	
Variable	Òbs.	Mean	S.Ď.	Min	Max	
Panel	A - County-	Level Climat	ic Variables			
Average Temperatures _{cv}	122,757	12.90	4.46	5.73	20.26	
Volatility of Temperatures _{cv}	122,757	1.45	0.74	0.48	2.83	
Panel B - County-L						
Lending _{cy}	91,597	10.45	2.592	0	19.32	
House Price Index _{cy}	79,481	108.62	35.97	40.49	207.15	
Amenities Rank _c	3,111	3.492	1.042	1	7	
Panel	C - Bank-Le	vel Exposure	to El Nino			
Exposureh	6,567	0.0645	0.559	-1	1	
b	-,		*****	=	=	
	Panel D - Ba	nk-Level Va	riables			
Lending _{by}	85,887	11.76	1.526	-4.605	20.49	
Deposits _{by}	85,887	12.15	1.394	0	21.01	
Assets _{bv}	85,887	12.32	1.430	7.947	21.50	
RE Lending _{by}	85,802	11.41	1.571	0	20.00	
CI Lending _{by}	85,540	9.791	1.685	0	19.42	
Ind . Lending _{by}	85,536	8.844	1.704	0	18.99	
ROE _{bv}	85,887	0.117	5.603	-1,638	27.49	
NIM _{by}	85,886	0.0563	0.0782	-0.397	4.654	
Interest Income _{by}	85,880	8.725	1.378	1.099	17.36	
Бу						
Panel D -			ected by LAS			
Operating Leverage _b	6,234	0.00232	0.00108	0.0000179	0.0298	
Leverage _b	6,234	0.840	0.0651	0.0932	0.972	
Unused Commitments _b	6,233	0.0155	0.0191	0	0.237	
Operating Capital _b	6,234	0.00578	0.00548	0.000717	0.347	
Dividends _b	6,234	0.00214	0.00242	0	0.0533	
ROA _b	6,234	0.0123	0.0282	-0.163	0.773	



La Niña: Different time-series and geography

Intensity of La Niña is weaker

Geography is different (not south vs. north)

(a) El Niño

(b) La Niña

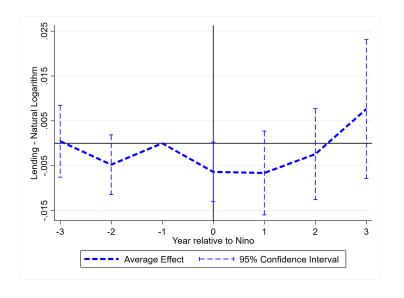
El Niño vs La Niña: No Effects 🔤

	(1)	(2)	(3)
Variables	Loans	Deposits	Assets
Bank Nina Exposure _b ×	0.002	0.002	0.003
La Nina _t	(0.007)	(0.006)	(0.005)
Bank FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Obs.	85,887	85,887	85,887
Adj. R sq.	0.911	0.930	0.945
Mean Dep. Var.	11.76	12.15	12.32

1. Event Study Specification (Back)

El Niño is almost as good as randomly assigned, benefit of event-study not clear

1. Event Study Specification (Back)


El Niño is almost as good as randomly assigned, benefit of event-study not clear

However, its repercussions may last longer so we test:

$$Y_{bt} = \alpha_b + \gamma_t + \sum_{j=-3}^{3} \beta_j \; \textit{Bank Exposure}_b imes \textit{Nino}_{tj} + \varepsilon_{bt}$$

in a 3 years window for loans, deposits and assets

Back

2. State or Spatial clustering Back

	(1)	(2)	(3)	(4)	(5)	(6)
Variables	Ave	rage Tempera	itures	Volatil	ity of Temperatures	
$PosExp_c$	0.518***		0.462***	0.072**		0.067**
\times El Nino _t	(0.068)		(0.069)	(0.030)		(0.031)
$NegExp_c$		-0.479***	-0.362***		-0.048*	-0.031
×El Nino _t		(0.071)	(0.069)		(0.029)	(0.029)
County FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Obs.	108761	108761	108761	108752	108752	108752
R sq.	0.00561	0.00293	0.00722	0.000481	0.000130	0.000533
Mean Dep. Var.	12.86	12.86	12.86	1.674	1.674	1.674

3. Demand and Supply with CRA data

Issue: fewer obs (2.5 M vs 0.6 M), same coefficients but less power

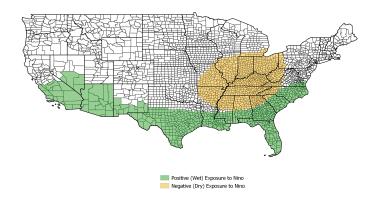
	(1)	(2)	(3)
Variables		Lending	
Positive Bank Exposure _b ×	-0.225	-0.208	
El Ninot	(0.175)	(0.174)	
$NegativeBankExposure_b \times$	-0.0372	-0.000943	
El Nino _t	(0.0796)	(0.107)	
Positive County Exposure _c \times	-0.152	` ,	-0.174*
El Ninot	(0.106)		(0.0970)
Negative County Exposure _c \times	-0.062Ó		-0.0637
El Nino _t	(0.0415)		(0.0491)
Bank FE	Yes	Yes	
County FE	Yes	103	Yes
Year FE	Yes		103
Bank × Year FE	103		Yes
County \times Year FE		Yes	
Obs.	608,106	608,106	608,106
		4 □ →	< # > < # > <

4. Ninos through MEI Back

Use a continuous measure of Niño with MEI index instead of top5 dummy

This includes many events that are weak or neutral

Magnitudes weaker, but in line


	(1)	(2)	(3)	(4)	(5)	(6)
Variables	Loans	Deposits	Assets	Loans	Deposits	Assets
Bank Exposure _b ×	-0.003	-0.002	-0.001			
MEI Nino Index $_t$	(0.002)	(0.002)	(0.002)			
Positive Bank Exposure _b ×				-0.012**	-0.007*	-0.003
MEI Nino Indext				(0.005)	(0.004)	(0.003)
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Obs.	85616	85616	85616	85616	85616	85616
Adj. R sq.	0.911	0.930	0.945	0.911	0.911	0.945
Mean Dep. Var.	11.76	12.15	12.32	11.76	12.15	12.32

Back

5. Precipitation

El Niño affects precipitation too:

Controlling for temperature exposure, no effect of precipitation:

	(1)	(2)	(3)
Variables	Loans	Deposits	Assets
Pank Evnagura V El Nina	-0.0131***	-0.00658*	-0.00754**
Bank Exposure _b × El Nino _t	(0.00508)	(0.00386)	(0.00356)
Bank Prec. Exposure _b \times	0.00108	0.0107	0.00674
El Nino _t	(0.00824)	(0.00653)	(0.00598)
Bank FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Obs.	85887	85887	85887
Adj. R sq.	0.945	0.911	0.911
Mean Dep. Var.	11.76	12.15	12.32

