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In this paper I study the dynamic macroeconomic effects of changes in government

spending or taxes by means of a time-varying structural VAR. Such a model was

used by Giorgio E. Primiceri (2005) to analyze monetary policy but is, with a

few exceptions, novel to address the question of the transmission mechanism of

fiscal policy. My results accord well with the notion of important changes in that

mechanism over time: the effectiveness of fiscal policy in stabilizing the economy

has decreased, more or less so for tax shocks and de facto with respect to spending.

I also find evidence, through counterfactual policy simulations, for positive longer

run effects on output when the government actively reduces the level of debts by

cutting spending. A passive reduction of debts through faster tax adjustments in

response to past expenditures has adverse effects on output. (JEL E62; H30; H50;

C32; C53)
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1. Introduction

What are the effects of fiscal policy? The longest and the deepest recession since the Great

Depression that started in December 2007 and the various stimulus and reinvestment measures

enacted by the U.S. Congress to facilitate the recovery have ended the eclipse of fiscal policy
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in the economic literature. Many economists from various fields of the profession have returned

their interest to this classical question.

During my own research on the empirical effects of fiscal policy shocks over the last years,

I have encountered two main road blocks on the way, which make precise and unbiased infer-

ence difficult: the identification of shocks, especially the tax shocks,1 and the state-dependent

or changing transmission mechanism.2 These issues leave, of course, plenty of room for new

econometric approaches. To be clear where this paper is heading, the objective is to provide

one possible solution for one of these road blocks: the changing transmission mechanism and

the resulting differences in the effectiveness of fiscal policy. The particular application is to the

U.S. economy over the 1970:1-2010:3 period.

The proposed solution is the time-varying parameter structural vector autoregressive (TVP-

VAR) model of Primiceri (2005) in which the vector of variables includes measures for govern-

ment spending, tax revenues, output, and federal debts. In the TVP-VAR model all coefficients,

covariances and volatilities vary over time. The laws of motion for the parameters allow for

smooth changes and, as such, the method differs from Markov switching or threshold models.

These models are better suited to study fiscal policy in recessions and expansions rather than

the evolution of its effectiveness. The estimation of the TVP-VAR is in the Bayesian tradi-

tion of Markov chain Monte Carlo algorithms, Gibbs sampling in particular, for the numerical

evaluation of the posterior distributions of the parameters.

To identify government spending and tax shocks I follow Olivier Blanchard and Perotti

(2002). Their method is the most compelling and cited VAR-based approach to identifying fiscal

policy shocks and I will take it as given throughout this paper. Simply put, identification rests on

the ability to disentangle, from the residual changes in government spending and revenues, the

discretionary part (i.e. the shocks) and the automatic adjustment to output. The difficulty, then,

and methodological innovation of this paper is to cast this essentially non-recursive identification

strategy into the one of Primiceri (2005), a strategy that relies on a triangular structure of the

identifying matrix in order to preserve the assumption of a linear state space model for the

TVP-VAR.

1 See among others the seminal papers of Christina D. Romer and David H. Romer (2010) and
Robert Perotti (2011) for measures of tax changes based on the narrative record of all major postwar
tax policy acts; and Eric M. Leeper, Todd B. Walker and Shu-Chun Susan Yang (2008) on the problems
arising through fiscal foresight.

2 Papers in this direction are Alan Auerbach and Yuriy Gorodnichenko (2010), Markus Kirchner,
Jacopo Cimadomo and Sebastian Hauptmeier (2010) and Manuel Coutinho Pereira and Artur Silva Lopes
(2010).
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The paper further innovates in a second direction. Besides tracing out the effects of the

policy shocks, I estimate impulse response functions of changes in parameters of the government’s

decision rules on spending and taxes. Specifically, I simulate a government that tries to reduce

the level of debts in two different ways: in an active one by cutting spending and in a passive

one by just adjusting taxes to cover past expenditures. The design of the policy counterfactuals

borrows from the monetary policy literature, especially from work of Fabio Canova and Luca

Gambetti (2009). Their approach is particularly appealing because it takes the Lucas critique

seriously by taking the estimated covariance structure of the coefficients into account in the

experiment. Moreover, including the federal debts in the vector of variables, controls for the

constraints the debt path puts on future spending and tax decisions. A channel typically ignored

in the VAR-based fiscal policy analysis (see Carlo Favero and Francesco Giavazzi, 2007).

While there is a huge recent literature using TVP-VARs to evaluate monetary policy (see,

e.g., Primiceri, 2005; Timothy Cogley and Thomas J. Sargent, 2001; Canova and Gambetti,

2009; Luca Benati and Paolo Surico, 2008), applications for fiscal policy are scarce. Two notable

exceptions are Kirchner, Cimadomo and Hauptmeier (2010) and Pereira and Lopes (2010). The

first of these two papers traces out the effects of government spending shocks in the euro area

and the second one identifies both spending and tax shocks for the postwar U.S. economy.

Both papers confirm the notion of important changes in the transmission mechanism over time:

the effectiveness of fiscal policy in stabilizing the economy has decreased on both sides of the

Atlantic.

The first set of my results is much in line with this general finding of Kirchner, Cimadomo

and Hauptmeier (2010) and Pereira and Lopes (2010). Changes in government spending had a

stronger positive effect on output, especially after six or seven quarters, in the 1970s and early

1980s. The picture is a bit different for the responses to tax shocks. Still, one can observe the

same pattern between the 1970s and 2000s, but the late 1980s and early 1990s now seem to be

the period when tax shocks were most effective. Unlike the other periods, this mid-period was

mainly characteristic for a few deficit-driven shocks (see Romer and Romer, 2010), with a more

persistent response of tax revenues and the desired effect of a significant reduction of federal

debts.

The results from the debt-reducing counterfactual policies suggest that the spending cuts in

the active government stance have hardly any adverse effects on the private sector and output

increases over time. Not surprisingly, just levying taxes to achieve budget surpluses without
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changing the spending behavior has detrimental effects on output.

2. Econometric Framework

Time-varying parameter structural VARs put quite a challenge on an econometrician be-

cause of the sheer amount of parameters to estimate: 8,732(!) to be exact in the model presented

in this section. While it is still possible to write down the likelihood for the estimation problem,

it comes close to a mission impossible to maximize it over such a high dimension, let alone the

problem of multiple maxima in ranges where the parameter values are anything but plausible.

This classical approach to estimation is basically a special case of a Bayesian one with flat priors.

Bayesian estimation with informative or diffuse priors is therefore the natural choice to tackle

the problem. Section 3 has the details.

Compared to the unproblematic and relative uncontroversial identification of monetary

policy, disentangling fiscal policy shocks is far from trivial. Because, strictly speaking, there is

no such thing as a “universal” fiscal shock that accounts for the numerous strings policy makers

can pull to counteract the business cycle by changes in spending and taxes. A billion dollars

spent for public infrastructure, education, or defense will hardly have the same effects both

on the individual citizen or the economy as a whole. In this paper I am, however, pragmatic

about this problem and keep the focus on the traditional macroeconomic issue of the aggregate

economy. Focusing on the aggregate economy and, by implication, on total government spending

and tax revenue shocks is in line with seminal papers such as Blanchard and Perotti (2002) and

Andrew Mountford and Harald Uhlig (2009).

Even though the traditional macroeconomic approach simplifies matters considerably, iden-

tifying fiscal policy shocks remains difficult because of endogeneities. Fiscal variables and the

business cycle are closely linked. For instance, under a fixed tax code both higher taxes and

higher economic growth will fill the Federal Treasury and, as a consequence, we do not know

whether the rise in tax revenues comes from a tax or business cycle shock. To overcome this

difficulty I use the method of Blanchard and Perotti (2002) to identify spending and tax shocks.

At the heart of their structural VAR methodology lies the identification of the just sketched

automatic “feedback” of economic activity on tax revenues and government spending. The

identification rests on additional information from outside the VAR model about the tax and

transfer system in order to pin down these feedback elasticities. It also relies on a timing assump-

tion. The quasi-impossibility of any discretionary within-quarter adjustment of fiscal policy in
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response to economic shocks attributes any contemporaneous changes to the feedback effects.

2.1. Data Description

The sample covers quarterly observations for the United States from 1970:1 until 2010:3.

To keep my results, with respect to the definition of the fiscal data, comparable with the sem-

inal work of Blanchard and Perotti (2002) and other studies in their tradition, I define these

variables accordingly: spending includes both government consumption expenditures and gross

investment, and net taxes are the current receipts less net transfers and net interest paid. The

model further includes data on output and federal debts. As Favero and Giavazzi (2007) force-

fully argue and show, it is important to control for the restrictions the debt path puts on future

government spending and tax decisions. Ignoring this channel would potentially bias the esti-

mates of the fiscal policy effects.

All variables enter the analysis in logarithmic form of their respective real per capita values.

The sources for nominal output, government spending, the necessary items to construct net

taxes, the deflator, population and federal debts are the NIPA tables and the FRED data base.3

Figure 1. Spending, Net Tax and Debt Shares of Output

Figure 1 shows some of the high frequency properties of the data. While, in the econometric

analysis, I use the variables in the level-form described above, for a quick visual inspection it is

more appealing to look at, say, the shares of spending, net taxes and federal debts with respect

to output. Most importantly, the shares display patterns that make the time-varying parameter

model a natural choice. For instance, the spending share declines steadily until the beginning

3 Specifically, NIPA tables 1.1.4 (line 1), 1.1.5 (lines 1 and 21), 3.1 (lines 1, 9, 11, 17 and 22), 7.1
(line 18); and FRED data base (series FYGFPUN). All variables downloaded on February 21, 2011.
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of the new millennium but increase since then. Likewise, the debt share remains either stable,

increases, or decreases over periods of several years. Besides these “long swings”, which can be

perfectly captured by TVP-VARs, there are a couple of large quarterly changes in taxes and

federal debts. The first episode is President Ford’s large temporary tax rebate of 1975:2 and

the second one are the recent effects of the Great Recession. TVP-VARs typically detect such

episodes of large and quick changes only rudimentary and capturing such changes is not the

objective of this paper. Intuitively, the more time variation one allows for in the VAR the more

will be explained by the shocks as opposed to the dynamics of the model.

2.2. Model Specification

The k-dimensional vector of quarterly observable variables, {yt}Tt=1, includes government

spending, net taxes, output, and federal debts in this order. I assume yt = (yg,t, yt,t, yx,t, yd,t)
′

evolves according to the TVP-VAR(p) process,

(1) yt = Ct +B1,tyt−1 + · · ·+Bp,tyt−p + ut,

in which Ct is a k × 1 vector of time-varying intercepts, Bi,t (i = 1, . . . , p) are k × k matrices of

time-varying coefficients and ut are possibly heteroscedastic reduced-form residuals with time-

varying covariance matrix Ωt. Iterating on (1) yields the corresponding infinite moving average

representation, i.e.

(2) yt = µt +

∞∑
h=1

Θh,tut−h.

µt = Ik +
∑∞

h=1 Θh,tCt and Θh,t = JB̃h
t J
′ in which B̃t is the corresponding VAR(1) companion

form of the VAR(p) in (1) and J a selector matrix:

(3) B̃t =

 Bt

Ik(p−1) : 0k(p−1)×k

 and J =
(
Ik : 0k×k(p−1)

)
.

The parameters Θh,t for h = 1, . . . ,H represent the reduced-form impulse response func-

tions. To transform these responses into ones with a structural interpretation I use the fairly

general model of Blanchard and Perotti (2002) that links the reduced-form residuals ut with the
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structural shocks et:

(4)



1 0 0 0

0 1 −α∗23,t 0

−α31,t −α32,t 1 0

−α41,t −α42,t −α43,t 1





ug,t

ut,t

ux,t

ud,t


=



1 0 0 0

α21,t 1 0 0

0 0 1 0

0 0 0 1





eg,t

et,t

ex,t

ed,t


,

in which (minus) α∗23,t is the predetermined tax elasticity with respect to output. Following

Favero and Giavazzi (2007) and Perotti (2007) I use a value of 1.85 for this elasticity for all

t = 1, . . . , T and, implicitly, a zero spending elasticity.4 Blanchard and Perotti (2002) have

the details on how to construct these elasticities based on institutional information outside the

information set of the VAR.

The non-recursive structure of the Blanchard-Perotti model, however, imposes a twist on

the time-varying parameter framework of Primiceri (2005). In his model, identification relies on

a recursive Choleski-like decomposition and consequently on a lower triangular matrix linking

the reduced-form residuals with the structural shocks. Now, the specific form of (4) allows me

to recast the problem into a lower triangular matrix that contains all the parameters we want to

estimate and a second matrix that collects the remaining predetermined variables.5 Specifically,

(5)



1 0 0 0

0 1 −α∗23,t 0

0 0 1 0

0 0 0 1





ug,t

ut,t

ux,t

ud,t


=



1 0 0 0

α̃21,t 1 0 0

α̃31,t α̃32,t 1 0

α̃41,t α̃42,t α̃43,t 1





eg,t

et,t

ex,t

ed,t


,

in which the mapping between (4) and (5) is

α̃21,t = α21,t,

α̃31,t = α31,t + α32,tα21,t,

α̃32,t = α32,t,(6)

α̃41,t = α41,t + α42,tα21,t + α43,tα31,t + α43,tα32,tα21,t,

α̃42,t = α42,t + α43,tα32,t, and

4 The fact that government spending, defined as in Section 2.1, does not include transfer payments
justifies the assumption of no feedback effect of spending to movements in the business cycle. See also
the evidence in Blanchard and Perotti (2002).

5 This way to reparameterize (4) follows in principle the idea of Pereira and Lopes (2010).
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α̃43,t = α43,t.

We can write the structural model more compactly as

(7) A∗tut = ÃtΣtεt.

εt are the normalized structural shocks, i.e. Var(et) = Σt is the diagonal matrix

(8) Σt =



σ1,t 0 0 0

0 σ2,t 0 0

0 0 σ3,t 0

0 0 0 σ4,t


,

which, in turn, leads to a reduction of the reduced-form covariance matrix Ωt given by

(9) Ωt = A∗−1t ÃtΣtΣ
′
tÃ
′
tA
∗−1′
t .

The structural impulse responses follow then from

(10) Φh,t = Θh,tA
∗−1
t ÃtΣt, h = 1, . . . ,H.

For the estimation it will be practical to collect the slope coefficients Bt = (B1,t : · · · : Bp,t)

in a k × kp matrix and to transform it together with the constants into a k(kp + 1) vector by

stacking the columns, i.e. βt = vec ((Ct : Bt)
′). The model (1) can now be rewritten as

yt = X ′tβt +A∗−1t ÃtΣtεt,(11)

X ′t = Ik ⊗
(
1 : y′t−1 : · · · : y′t−p

)
,

in which the operator ⊗ denotes the Kronecker product. Like the constants and the slope coef-

ficients, I bring the non-zero and non-one elements of the covariances Ãt and volatilities Σt into

vector form. Specifically, α̃t = (α̃21,t, α̃31,t, α̃32,t · · · , α̃k1,t, · · · , αkk−1,t)′ and σt = (σ1,t, · · · , σk,t)′

where the corresponding dimensions are k(k − 1)/2× 1 and k × 1.

The vectors αt, βt, and σt summarize all the time-varying parameters of the model. As

in Primiceri (2005) I let the coefficients αt and βt evolve as random walks and the standard

8



deviations σt follow a geometric random walk:

α̃t = α̃t−1 + ζt(12)

βt = βt−1 + νt,(13)

log σt = log σt−1 + ηt.(14)

The specification for σt falls into the class of models known as stochastic volatility. While in

infinite samples a random walk hits any bound for sure, the use of finite samples makes it possible

to maintain the random walk assumption. A great advantage as we do not have to estimate

any further parameters, although, in principle, we could extend (12), (13), and (14) to represent

more general autoregressive processes (for details see Section 4.4.2 in Primiceri, 2005).

The innovations εt, ζt, νt, and ηt are mutually uncorrelated Gaussian white noises with

zero mean and covariances Ik, Q, S, and W , known as the hyperparameters in the Bayesian

literature. Summarized in the matrix V we have

(15) V = Var





εt

νt

ζt

ηt




=



Ik 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


and S =



S1 0 · · · 0

0 S2
. . .

...
...

. . .
. . .

...

0 · · · 0 Sk−1


with all matrices, besides the k-dimensional identity matrix Ik, being positive definite. The

covariance of the innovation term in the state equation for the log volatilities is block diago-

nal, i.e. S1 = Var([∆α̃21,t]), and Si−1 = Var([∆α̃i1,t, · · · ,∆α̃ii−1,t]′) for all i = 3, . . . , k. The

rather specific assumptions on the structure of V and S are standard in the literature (see, e.g.,

Primiceri, 2005; Canova and Gambetti, 2009; Benati and Surico, 2008) and are not essential to

keep the estimation feasible. They offer, however, numerous advantages: The first one is the

clear structural interpretation of the various sources of uncertainty which would be cumbersome

in the case of more non-zero blocks. Second, the block-diagonality of S with blocks correspond-

ing to parameters in separate equations enables us to model the blocks [α̃21,t], [α̃31,t, α̃32,t] , . . . ,

[α̃k1,t, · · · , α̃kk−1,t] in linear state space form. The advantage of linearity will become clear

momentarily in Section 3. And, finally, assuming mutually uncorrelated innovations does not

exaggerated the curse-of-dimensionality problem inherent in all time-varying parameter models

any further.
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2.3. Counterfactual Fiscal Policy Scenarios

What would have happened to output had the government pursued a more aggressive policy

to reduce to the level of debts? Questions like this appear to be simple with time series models:

just change the relevant parameters in the decision rules and trace out the effects. But the effect

of changing one parameter typically spreads over all the other parameters; the essence of the

Lucas critique. Canova and Gambetti (2009) provide a natural solution to the critique, in an

experiment that mimics a more aggressive monetary policy, by explicitly taking into account

the covariance structure, i.e. the matrix Q in (15), of the whole coefficient set.

Let us define Gt = A∗−1t ÃtΣt in (11) and rewrite the reduced-form model (1) in structural

form,

(16) G−1t yt = G−1t Ct +G−1t B1,tyt−1 + · · ·+G−1t Bp,tyt−p + εt,

or equivalently

(17) G−1t yt = X ′t
(
G−1t ⊗ Ikp+1

)
βt + εt = X ′tγt + εt,

in which X ′t is defined as in (11) and γt are the structural coefficients. Using (13) and after some

rearranging we get

(18) γt =
(
G−1t ⊗ Ikp+1

) (
G−1t−1 ⊗ Ikp+1

)−1
γt−1 +

(
G−1t ⊗ Ikp+1

)
νt

as the law of motion for the structural coefficients on the lagged variables. The last term,

ωt =
(
G−1t ⊗ Ikp+1

)
νt, contains all the k(kp+1) shocks. Let ω̃t ⊂ ωt be the subvector containing

the n shocks of interest and the submatrix G̃t consists of the n corresponding rows of G−1t ⊗Ikp+1

such that ω̃t = G̃tνt. Given the last expression and the covariance matrix Q from (13), we can

write νt conditional on ω̃t in turn as

(19) νt = QG̃′t

(
G̃tQG̃

′
t

)−1
ω̃t.

Now to compute the impulse response function of the policy counterfactual I use the method

of Gary Koop, M. Hashem Pesaran and Simon M. Potter (1996) and take the difference between

two different realizations of the forecast Et(yt+i|·). The two realizations are identical up to t−1,
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but one realization assumes that there is an innovation at date t of size ω̃t = δ, while the other

realization evolves along its regular innovation-free path. Specifically,

(20) Φc
h,t = Et

(
yt+h|ω̃t = δ, {ω̃t+j}hj=1 = 0, Q, G̃t, βt−1, {yt−j}

p
j=1

)
− Et

(
yt+i|{ω̃t+j}hj=0 = 0, Q, G̃t, βt−1, {yt−j}

p
j=1

)
for h = 0, 1, 2, . . . ,H. Although δ is only a one-time shock its effects are permanent through the

random walk nature of the law of motion for the time-varying parameters. To further ensure

against the Lucas critique, I calibrate δ to represent, in the sense of Leeper and Tao Zha (2003),

only a modest or typical policy intervention in the sample. One posterior standard deviation

of the corresponding shock νt to the reduced-form parameters βt (i.e. the square root of the

associated diagonal element of Q) is consistent with such a typical intervention.

My interest centers around two counterfactual fiscal policies that involve the structural

equations for government spending and taxes. Similar to Taylor rules, these structural equa-

tions provide simple descriptions of fiscal policy-making, approximating the many complex mech-

anisms and constraints that influence the government’s decisions. Now, in both counterfactual

experiments, the objective is to bring the level of federal debts down. The ways to get there dif-

fer, however. In the first experiment, I simulate a government that actively pursues its objective

by cutting spending more aggressively with respect to past debt levels. The other experiment

shows what I call a passive government. It achieves the debt reduction not by actively reacting

to debt levels as before. Rather, the government runs surpluses by adjusting taxes faster to

recent expenditures.

For the technical implementation of the first experiment—the active government stance—I

set up the matrix G̃t to contain the rows corresponding to the lagged coefficients of spending

and debts in the spending equation. The specific shocks in the vector δ hit the debt coefficients

by minus one-standard deviation and leave the spending coefficients (i.e. the autoregressive

component) unaltered. As the autoregressive component has typically the highest weight in

each VAR equation, any “indirect” effect induced by changing other coefficients may dominate

the dynamic effects of the counterfactual experiment. Setting this indirect effect to zero ensures

a clear interpretation of the results with respect to the objective of the experiment (see Canova

and Gambetti, 2009). Similarly, the second experiment—the passive stance—involves the lagged

coefficients on spending and taxes in the tax equation; the shocks to the spending coefficients
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are now plus one-standard deviation and the ones affecting the autoregressive component are

again zero.

3. Bayesian Estimation

Starting with the papers of Cogley and Sargent (2005) and Primiceri (2005), structural time-

varying parameter VARs with a recursive identification scheme have spread into the macroecono-

metric literature, especially with applications to monetary policy. Their method is appealing

because it estimates the joint posterior of all parameters in the model, a distribution from which

it is difficult to sample directly, by splitting the problem into smaller blocks. The parameters

within each block can then be drawn from the conditional distributions through Gibbs sampling.

The Gibbs sampler is a variant of a Markov chain Monte Carlo (MCMC) algorithm: it

exploits the principle that it is typically easier to sample from a lower dimensional distribution,

conditional on other parameters (i.e. the blocks). Andrew Gelman, John B. Carlin, Hal S. Stern

and Donald B. Rubin (1995, chap. 11) show that the stationary distribution of the Markov Chain

generated by the Gibbs sampler is the joint distribution we are looking for. Furthermore, MCMC

algorithms yield smoothed estimates of the time-varying parameters as they use information

based on the entire set of observations. Compared to particle filters, smoothing methods lead to

more efficient estimates when, like in this paper, the interest is in the evolution of the observable

states (see, e.g., Christopher A. Sims, 2001; Primiceri, 2005).

As a notational convention, a generic vector or matrix xτ consists of a sequence of observable

variables or estimates up to time τ , i.e. xτ = {xt}τt=1. I further express a realization zt

conditional on an information set, say, xτ as zt|τ and, likewise, I abbreviate the conditional

mean and variance of an arbitrary parameter θ as θt|τ and V θ
t|τ . The function p(·) denotes a

generic density and dim(·) specifies the dimension of a vector.

3.1. Priors

An obvious choice to calibrate the priors are simple estimates from time-invariant ordinary

least square regressions on (1) and (5). Such a strategy has already been used by Cogley and

Sargent (2005) and Primiceri (2005), among others. In its original form this strategy requires to

run these auxiliary regressions on a training sample that covers data which are then discarded

for the main analysis. As quarterly observations for federal debts are only recorded after 1970

sacrificing, say, ten years of data for a training sample throws away a lot of information and
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might leave us with a too short sample. If a training sample is not available Canova and Matteo

Ciccarelli (2009) suggest to estimate the features of the priors on the entire sample, i.e. on data

from 1970:1 until 2010:3 (see also Kirchner, Cimadomo and Hauptmeier, 2010). As a side effect,

using a “full sample” prior, minimizes the uncertainty involved in choosing proper priors. To

denote the time-invariant estimator I will use “hats”.

The details for the specification of the prior densities follow Canova and Gambetti (2009)

and are quite similar to the ones in Primiceri (2005) and other papers. For the initial states

of all time-varying parameters the priors p(β0), p(α̃0) and p(log σ0) are normally distributed,

while the hyperparameters p(Q), p(Si) and p(W ) have an inverse Wishart distribution. Given

the laws of motion (12), (13) and (14), this choice of prior distributions for the initial states and

the hyperparameters leads to normal priors for the entire sequences {βt, α̃t, log σt}Tt=1. Like

the normal distribution the Wishart distribution requires two input arguments, the scale factor

and the degrees of freedom. For the prior to be proper the degrees of freedom must exceed the

dimension of the respective hyperparameter at least by one; a choice of “just one” puts as little

weight as possible on the prior. As the inverse Wishart distribution is a conjugate prior for

the covariance matrix of the corresponding time-varying parameters βt, α̃t and log σt the scale

factor has to be a multiple of the time-invariant covariance used to calibrate the prior for the

initial states and the degrees of freedom. Bringing everything together we have the following set

of prior densities for the parameters,

p(β0) = N
(
β̂, Var(β̂)

)
,

p(α̃0) = N
(
ˆ̃α, Var(ˆ̃α)

)
,(21)

p(log σ0) = N
(
log σ̂, Ik)

)
,

and the hyperparameters

p(Q) = IW
((

0.0003× (dim(β̂) + 1)×Var(β̂)
)−1

, dim(β̂) + 1
)
,

p(Si) = IW
((

0.001× (i+ 1)× Ŝi
)−1

, i+ 1
)
, i = 1, . . . , k − 1,(22)

p(W ) = IW
((

0.001× (dim(σ̂) + 1)× Ik
)−1

, dim(σ̂) + 1
)
,

in which the variance Ŝi refers to the i-th block of S in (15) and the variance for log σ0 and W

is arbitrarily chosen to be the identity matrix. The factors 0.0003 and 0.001 and the degrees of
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freedom in the prior specification correspond to the values in Canova and Gambetti (2009) and

transforms the initial informative prior choice Var(β̂) and Ŝi into a diffuse and uninformative

one where more weight is on the sample information. This practice is more or less standard in

the TVP-VAR literature, although slight differences can be found for p(Q). Primiceri (2005),

for instance, uses a factor of 0.0001 and 2 × dim(β) for the degrees of freedom. The results

for these two prior specifications are, however, very similar; see Cogley and Sargent (2005) for

another paper that specifies the prior for p(Q) as in (22).

3.2. Sampling Algorithm

The Gibbs sampling algorithm set forth here specifies three blocks of conditional distribu-

tions for all parameters in the model: the coefficient states βt and Q; the covariance states α̃t and

S; and the volatility states σt and W . The first two blocks can easily be cast into a linear and

Gaussian state space form and therefore the standard algorithm for Gibbs sampling of Chris K.

Carter and Robert Kohn (1994) can be used. Drawing volatility states is a bit more tricky as

they have a nonlinear and nonnormal state space form. Sangjoon Kim, Neil Shephard and Sid-

dhartha Chib (1998) provide a linear and approximately Gaussian reformulation of the problem

with the advantage of restoring the assumptions needed for the standard sampling algorithm to

work. The approximation is necessary because the linear transformation leads to innovations in

the observation equation that are distributed as logχ2(1). Following Kim, Shephard and Chib

(1998), I approximate this logχ2 distribution with a mixture of seven normals. The indicator

matrix sT defines, out of the seven components, the selection of normal approximations for these

innovations over t = 1, . . . , T .

Step 1: Coefficient states p
(
βT |yT , α̃T , σT , sT , V

)
and algorithm in detail. — Equations

(11) and (13), rewritten here for convenience,

(23) yt = X ′tβt + ut and βt = βt−1 + νt,

constitute a state space model in which both ut and νt are normally distributed with a zero

mean and variances Ωt and Q. Further, the block diagonal structure of (15) assumes that ut

and νt are mutually uncorrelated. Now, conditional on the data, α̃T , σT and V the variance Ωt

in the observation equation is known from (9) and we can therefore generate the whole sequence
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βT as in Lemma 2.1 of Carter and Kohn (1994):

(24) p
(
βT |yT , α̃T , σT , sT , V

)
= p

(
βT |yT , α̃T , σT , sT , V

) T−1∏
t=1

p
(
βt|βt+1, y

t, α̃t, σT , sT , V
)
.

Then, to get βT from p
(
βT |yT , · · ·

)
we, first, generate βT from p

(
βT |yT , · · ·

)
= N

(
βT |T , V

β
T |T
)

and, second, for t = T−1, . . . , 1 we draw βt from p
(
βt|βt+1, y

t, · · ·
)

= N
(
βt|t+1, V

β
t|t+1

)
. Starting

from β0|0 = β̂ and V β
0|0 = Var(β̂) the Kalman filter recursion over t = 1, . . . , T , i.e.

βt|t−1 = βt−1|t−1,

V β
t|t−1 = V β

t−1|t−1 +Q,(25)

βt|t = βt|t−1 + V β
t|t−1Xt

(
X ′tV

β
t|t−1Xt + Ωt

)−1 (
yt −X ′tβt|t−1

)
and

V β
t|t = V β

t|t−1 − V
β
t|t−1Xt

(
X ′tV

β
t|t−1Xt + Ωt

)−1
X ′tβt|t−1,

leads to a draw of βT form the normal distribution using the elements βT |T and V β
T |T from the

last recursion. We now plug the results of the filter and the draw of βT into a reversed version

of the Kalman filter to derive βT−1|T V
β
T−1|T . This backward updating delivers a draw for βT−1

and so forth until we arrive at β1. Specially, the backward updating steps for t = T − 1, . . . , 1

are

βt|t+1 = βt|t + V β
t|t

(
V β
t|t +Q

)−1 (
βt+1 − βt|t

)
and(26)

V β
t|t+1 = V β

t|t − V
β
t|t

(
V β
t|t +Q

)−1
V β
t|t.

For more details on Gibbs sampling for state space models and the Kalman filter see Carter and

Kohn (1994) and Brian D. O. Anderson and John B. Moore (1979).

So far nothing ensures that draws of βT result in a stable VAR process. In fact, the use of

data in level form with a more or less clear upward drift and nonstationary behavior leads hardly

to any stable draw because a stable VAR process is by definition stationary (see Proposition

2.1 in Helmut Lütkepohl, 2005) As such, a strict “rule” as in Cogley and Sargent (2001) that

discards every complete sequence of draws βT where at least one draw βt has an unstable VAR

representation is simply infeasible. For the analysis of monetary policy, stability is a sensitive

matter since the central bank’s main objective is to maintain price stability. The advantage in

a monetary policy VAR, however, is that the variables typically enter in first differences (most
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likely stationary form) and the rule has therefore less bite and will not slow down the sampling

algorithm significantly. In a fiscal policy VAR, on the other hand, the whole stability issue may

be less of a concern. As Kirchner, Cimadomo and Hauptmeier (2010) argue, certain episodes

may be well described by fiscal instabilities. In every case, I take a compromise here and impose

the stability rule on the growth rates of output, spending, taxes and federal debts. Specifically,

I check the roots of the associated VECM polynomial of the VAR and discard every draw that

has more than k = 4 roots in or on the unit circle.

Step 2: Covariance states p
(
α̃T |yT , βT , σT , sT , V

)
. — Starting with the compact form of

the structural model (5), we can derive the observation equation of the proper state space model

from

(27) A∗t
(
yt −X ′tβt

)
= y∗t = Ãtet.

Conditional on βT and the matrix of predetermined contemporaneous relations the adjusted

residuals y∗t are observable. As in Primiceri (2005), here is the point where the triangular form

of the matrix Ãt with ones on the main diagonal can be conveniently used to rewrite (27) as

observation equation

(28)



y∗g,t

y∗t,t

y∗x,t

y∗d,t


=



0 0 0 0 0 0

eg,t 0 0 0 0 0

0 eg,t et,t 0 0 0

0 0 0 eg,t et,t ex,t





α̃21,t

α̃31,t

α̃32,t

α̃41,t

α̃42,t

α̃43,t


+



eg,t

et,t

ex,t

ed,t


.

and (12) serves as state equation for α̃t. Now, the block-diagonality of the covariance matrix S

of the innovations ζt and block-triangular structure of the 4 × 6 matrix in (28), enables us to

use the algorithm of Carter and Kohn (1994), explained in Step 1, in an equation-by-equation

fashion. Specifically, given βT and the triangular form of Ãt, eg,t is predetermined and thus

α̃21,t can be drawn in the first equation. For the second equation we use the draw of α̃21,t

and predetermine et,t such that we can obtain draws for the block [α̃31,t, α̃32,t]. Continuing

this procedure of predetermining one structural shock at the time leads to draws for the block

[α̃41,t, α̃42,t, α̃43,t] in the third equation and so forth. The triangular structure of predetermined
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variables in the individual equations and the independence across the blocks of S restores the

necessary assumption of a linear state space model in the Carter and Kohn (1994) algorithm.

Table 1—Selection of the Mixing Distribution to be logχ2(1)

j pj mj v2j j pj mj v2j

1 0.00730 −10.12999 5.79596 5 0.34001 0.61942 0.64009

2 0.10556 −3.97281 2.61369 6 0.24566 1.79518 0.34023

3 0.00002 −8.56685 5.17950 7 0.25750 −1.08819 1.26261

4 0.04395 2.77786 0.16735

Notes: Replication of Table 4 in Kim, Shephard and Chib (1998).

Step 3: Volatility states p
(
σT |yT , βT , α̃T , sT , V

)
. — Drawing σT relies on the algorithm of

Kim, Shephard and Chib (1998), a procedure to transform an otherwise nonlinear and nonnormal

state space model into a linear and approximately normal one; the standard algorithm of Carter

and Kohn (1994), as laid out in step 1, is the again available. The observation equation can be

written as

(29) Ãt
−1
A∗t
(
yt −X ′tβt

)
= Σtεt.

Given yT , βT , α̃T the right-hand side is observable and is nothing else than the set of identified

structural shocks, et, of Step 2. Since I have defined the law of motion (14) for the diagonal

entries of Σt as a geometric random walk, we can convert (29) into the appropriate form by

squaring and taking the logarithm. We obtain the linear state space model

(30) e∗t = 2 log σt + ξt and log σt = log σt−1 + ηt,

in which e∗i,t = log
(
e2i,t + 0.001

)
and ξi,t = log

(
ε2i,t
)

for i = (g, t, x, d); the offset constant 0.001

deals with very small values of e2i,t as in Kim, Shephard and Chib (1998); and the innovation

ξt follows a logχ2(1) distribution. While this conversion restores the linearity assumption the

distributional form of ξt still precludes direct and simple inference. Kim, Shephard and Chib

(1998) show how to accurately approximate the logχ2(1) distribution through a matched mixture

of normal distributions,

(31) f
(
ξi,t
)
≈

7∑
j=1

pjN
(
ξi,t|mj − 1.2704, v2j

)
, i = (g, t, x, d),
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in which N
(
ξi,t|mj−1.2704, v2j

)
denotes the density function of a normal distribution with mean

mj − 1.2704 and variance v2j . Values for pj , mj and v2j are reproduced in Table 1. Conditional

on sT we can draw a value for ξi,t|si,t = j ∼ N
(
mj − 1.2704, v2j

)
and proceed as in Step 1 to

draw log σi,t for all i and t. Given these draws of ξi,t we independently sample each si,t from

the discrete density Pr (si,t = j|e∗t , log σi,t), a density which is proportionally determined from

the normal density N
(
e∗t |2 log σi,t +mj − 1.2704, v2j

)
.

Step 4: Hyperparameters. — The inverse Wishart is a convenient choice for the prior distri-

bution of the innovation variances V in (15), i.e. the hyperparameters Q, W and the blocks of S.

Since the parameters βT , α̃T and σT are mutually uncorrelated draws from a normal distribution

the posterior distribution of each hyperparameter is also inverse Wishart. Conditional on βT ,

α̃T , σT , sT and yT the innovations in (15) become observable and it is therefore relatively easy

to draw the hyperparameters from the inverse Wishart. The scale matrix and the degrees of

freedom, the two factors that fully specify the inverse Wishart, are based on the choice for the

prior distribution and take the form

(
0.0003× (dim(β̂) + 1)×Var(β̂) +

T∑
t=1

∆βt∆β
′
t

)−1
and dim(β̂) + 1 + T,

(
0.001× (i+ 1) + T × Ŝi

)−1
and i+ 1 + T, i = 1 . . . , k − 1,(32)

(
0.001× (dim(σ̂) + 1)× Ik +

T∑
t=1

∆σt∆σ
′
t

)−1
and dim(σ̂) + 1 + T.

in which Ŝi denotes the variance of the i-th block of S in (15).

For the counterfactual analysis, Step 1 needs to be slightly modified. Everything else being

as just laid out, the shocked and shock-free realizations of the impulse response function (20)

come from draws of βt−1. The sequence of parameters βt+h, h = 0, 1, . . . ,H, follows then from

(13) and (19) either with ω̃t = δ or ω̃t = 0.

The Gibbs sampling algorithm is now complete. Iterations on Steps 1 to 4 produce a set

of draws from the conditional distributions that converge in the limit to the joint posterior

distribution of all the parameters in the model (see, e.g., Alan E. Gelfand and Adrian F. M.

Smith, 1990). I perform 100, 000 iterations from which I discard the first 50, 000 and save

only every fifth draw of the remaining 50, 000 draws. This “thinning” practice breaks the

autocorrelation of the draws since draws from a Markov chain are typically not independent.
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3.3. Convergence Diagnostics of the Markov Chain

From theoretical work such as Gelfand and Smith (1990) we know that the Gibbs sampler

converges to the “true” joint posterior distribution as the number of iterations go to infinity.

Whether this property holds in the underlying problem with a finite number is an important

question which I address here. Intuitively, convergence of the Markov chain slows down the

more complicated the conditional distribution gets.

I implement three MCMC convergence diagnostics for the 10, 000 saved draws of each

parameter and hyperparameter: the sample autocorrelation; the measure of John Geweke (1992);

and the Adrian E. Raftery and Steven M. Lewis (1992) diagnostic. Table 2 reports the results of

the diagnostic checks for each of the 8, 732 parameters in the model. Because of the sheer amount

of parameters the table shows summary statistics, grouped into hyperparameters V , coefficients

βT , covariances α̃T and volatilities σT . Moreover, each summary statistic reports two values

based on the first and last 1, 500 draws from the 10, 000 saved iterations. This testing strategy

adds another layer to the formal MCMC diagnostics: if the Markov chain is in an equilibrium

state the means of these two splits should be roughly equal.

The 20-th-order sample autocorrelation summarized in Panel A of Table 2 show a relatively

low degree of autocorrelation. Only a few hyperparameters V exhibit statistics higher than 0.2.

The draws are therefore almost independent, an indication for the efficiency of the algorithm and

for accurate posterior estimates. Related to that is the inefficiency factor, as measured by the

inverse of the relative numerical efficiency statistic of Geweke (1992) with a 4% tapered window

for the estimation of the spectral density at frequency zero. If the draws come from an inde-

pendent and identically distribute (iid) sample, drawn directly form the posterior distribution,

the inefficiency factor has a value of one. For instance, in Panel B of Table 2 the mean value

of 10.94 for the last 1, 500 draws of the hyperparameters V indicate that about eleven times

as many draws are necessary to achieve the same numerical efficiency of an iid set of draws.

Since only values above 20 are considered to be critical and 10.94 is the largest one here, Table

2 confirms the iid nature of the draws. Finally, Raftery and Lewis (1992) provide a measure of

the number of draws actually required to achieve a certain accuracy of the posterior summaries

of the Markov chain. I set the parameters for this test such that a nominal reporting based on

a 95% interval using the 0.025 and 0.975 quantile points leads to an accuracy of the posterior

values of 0.025 to the left and right of the specified quantiles in the cumulative distribution

function. The probability of attaining this accuracy is 95%. The maximum number over the
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whole parameter space for the Raftery and Lewis (1992) diagnostic is 4, 818 and thus well below

the 10, 000 draws used in the analysis. All three MCMC convergence diagnostics do not indicate

any problems with the Gibbs sampler.

Table 2—Convergence Diagnostics of the Markov Chain

Median Mean Min Max 10-th 90-th

A. 20-th-Order Sample Autocorrelations

V −0.02 0.04 −0.02 0.04 −0.31 −0.05 0.44 0.49 −0.15 −0.01 0.13 0.08

βT 0.00 0.00 0.00 0.00 −0.20 −0.03 0.18 0.05 −0.07 −0.01 0.07 0.02

α̃T −0.04 0.01 −0.03 0.01 −0.14 −0.02 0.10 0.03 −0.11 −0.01 0.07 0.02

σT −0.02 0.00 −0.02 0.01 −0.17 −0.03 0.11 0.09 −0.07 −0.01 0.05 0.02

B. Inefficiency Factor

V 5.74 10.67 5.74 10.94 3.79 4.16 9.54 41.34 4.54 7.36 6.86 14.50

βT 1.11 1.43 1.15 1.50 0.50 0.61 2.49 4.35 0.86 1.04 1.50 2.02

α̃T 0.94 1.08 0.96 1.30 0.70 0.77 1.36 2.69 0.85 0.83 1.13 2.21

σT 1.31 1.66 1.38 1.87 0.74 0.78 3.57 10.28 0.98 1.10 1.87 2.64

Notes: Summary of the distributions of the 20-th-order sample autocorrelations and the inefficiency
factors (the inverse of Geweke’s (1992) measure of relative numerical efficiency with a 4% tapering of
the spectral window at frequency zero) for the whole parameter space. “10-th” and “90-th’ denote
the 10-th and 90-th percentiles. Each statistic has two entries which refer to statistics based on the
first and last 1, 500 draws out of the saved 10, 000. The discarded burn-in draws are 50, 000 and the
thinning factor is five.

4. Results

I center the discussion of the results, especially the observed changes over the last 40 years,

around three topics: the volatility of government spending and tax shocks, the propagation of

these shocks and counterfactual fiscal policy scenarios.

4.1. Volatility of the Fiscal Shocks

Figure 2 shows the time profile of the median and the interval containing 68% of the

posterior distribution of the standard deviation of the estimated fiscal policy shocks. For the

government spending shock the median and the 68% interval are fairly stable over time while for

tax shocks these statistics are, on average, lower in the 1980s and 1990s than at the beginning

and the end of the sample. The picture of a relatively high volatility in the 1970s, with a peak

around 1975, and in the 2000s is consistent with Romer and Romer’s (2010) narrative analysis

of tax shocks. The 1970s and early 1980s were periods of frequent and large tax changes, such as

presidents Ford and Reagan’s tax cuts, mainly aimed to boost long-run growth or to counteract
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economic conditions. Until the Bush tax cuts of the early 2000s and the tax measures included

in the 2008-2009 stimulus packages there were only a few and relatively modest deficit-driven

tax changes.

Figure 2. Standard Deviation of the Structural Shocks

Notes: The two graphs displays the time-varying volatility parameters σ1,t and σ2,t in (8). Superim-
posed are NBER-dated U.S. recession episodes.

4.2. The Dynamic Responses to Fiscal Shocks

Figures 3 and 4 display the systematic responses to fiscal shocks. I focus on three specific

periods: 1975:2, 1991:2 and 2009:1. Although all of them represent NBER-dated troughs of

U.S. recessions the sole objective is to uncover changes in the transmission of fiscal policy shocks

over the last 40 years. Since I use smoothed estimates based on the entire set of observations

the responses in, say, 1973:4 and 1975:2 are hardly to distinguish from each other. Overall,

the impulse responses support, perhaps with a few exceptions, the common belief about the

changing transmission mechanism of fiscal policy. Robert M. Solow (2005) brings this change

to the point: “[t]he use of fiscal policy as a stabilization device has all but vanished [...] in the

United States.”

The output response to a spending shock (Figure 3) was more effective in (and around)

1975:2 when there was considerable slack in the U.S. economy; the general U-shaped pattern

is in line with the results of Blanchard and Perotti (2002). While the spending response is

relatively persistent and similar over time, tax revenues fall below zero after an initial increase

and slowly revert to trend. This U-shape is mainly driven by the automatic adjustment of

tax collections to changes in output but the pattern is somewhat different over time, reflecting
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changes in the Taylor-type rule describing tax-policy making (i.e. the structural tax equation).

Around 1975:2, a change in spending today leads to a faster decline of tax revenues tomorrow.

This faster decline comes, however, at the cost of higher future debts.

Figure 3. Responses to Spending Shocks

Notes: Impulse responses of output, government spending, net taxes and federal debts to spending
shocks in 1975:1, 1991:1 and 2009:2. Responses expressed in percentage changes.

In Figure 4, the output effects to tax shocks are, perhaps, the exception to the mentioned

conventional wisdom of a declining fiscal policy effectiveness. A tax shock leads to a higher

(negative) output response in 1991:1 than in 1975:1. The years around 1991 was a period of

several deficit driven tax changes aimed to bring the ever rising debt-to-output ratio to a halt

(see right panel in Figure 1). More persistent tax revenues and lower spending, although the

spending effect is in general quite small, reduce debt levels more effectively than in other periods.

This debt reduction motive of the government has, of course, detrimental effects on output.

Much of the debate about fiscal policy effectiveness centers around the size of spending and

tax multipliers. Figure 5 displays the evolution of the output responses at selected horizons
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Figure 4. Responses to Tax Shocks

Notes: Impulse responses of output, government spending, net taxes and federal debts to tax shocks
in 1975:1, 1991:1 and 2009:2. Responses expressed in percentage changes.

from 1970:3 until 2010:3 and expressed as dollar for dollar changes. To convert the original

elasticity estimates from before into derivatives, I divide the elasticities by the spending-to- and

tax-to-output ratio prevailing at time t. These are the ratios plotted in the left panel of Figure

1. For better comparison of the two multiplier effects, I compute the tax multiplier based on

negative shocks.

Three results stand out from the multiplier analysis. First, the spending multiplier in the

1970s is, on average, only more effective in the longer run: the government buys with one dollar

about 1.60 dollars of output four years out. Second, the impact spending multiplier increases

almost steadily over time, from one dollar in 1970 to 1.25 dollars in 1998. This effect arises,

however, mostly through the declining spending share (see Figure 1). In every case, the size of

the spending multipliers is reasonable throughout taking values between 0.50 and 1.60 dollars

before 1980 and between 0.50 and 1.25 dollars after 1980. Table 2 in Robert E. Hall (2009)
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provides a summary of several time-invariant VAR estimates: there the multipliers range from

0.50 up to 1.20 dollars. Finally, tax multipliers lie consistently below the spending multipliers.

Starting with a value of 0.50 dollars in 1970 the effect after four years reaches its peak at roughly

0.80 dollars in 1983 and decreases thereafter until it reaches again the 0.50 dollar mark in 2010.

For the other horizons the effects lie between zero and 0.40 dollars with no obvious trends. The

comparison of tax multipliers with other papers is flawed because recent papers such as Romer

and Romer (2010) and Perotti (2011) use a narrative approach to identify tax shocks and get

much larger effects. For that reason, I plan to incorporate narrative measures of tax shocks in

a fiscal TVP-VAR in future work.

Figure 5. Multipliers

Notes: The spending and tax multipliers display the output responses expressed as dollar for dollar
changes. Conversion from percentage changes into dollar changes based on the spending-to- and tax-
to-output ratio prevailing at time t (see ratios in Figure 1). For better comparison with the spending
multiplier, I use a negative tax shock to compute the tax multiplier.

4.3. Fiscal Policy Counterfactuals

The objective of the counterfactual experiments laid out in Section 2.3 is to simulate a

government that reduces the level of debts in two different ways, an active and passive one. In

the first experiment I let the government cut spending more aggressively whenever we observe

rising debts and, in the second one, the government adjusts taxes more swiftly in response to

higher expenditures. Scenario one requires the government to directly control the level of debts

through tighter spending constraints and has a stronger incentive to increase its own efficiency.

Under scenario two, on the other hand, the government just levies enough taxes in order to pay

for whatever expenditures they made in the previous periods. The questions is then how the
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different incentives the government has in the active and passive stance will spread over the

private sector and how, as a result, it will affect output.

Figure 6. Active Government Stance

Notes: Counterfactual responses of output, government spending, net taxes and federal debts in
1975:1, 1984:1, 1991:1 and 2009:2. The experiment simulates a government that reduces debts by
means of more aggressive spending cuts. Computed along the lines of Section 2.3 and Canova and
Gambetti (2009). Responses expressed in percentage changes.

The design of the counterfactual follows Canova and Gambetti (2009) and circumvents

the Lucas critique by accounting for the effect a change in one coefficient has on the whole

coefficient structure βt through the estimated correlation Q among the coefficients. I display

the counterfactual responses in Figures 6 and 7 at four specific dates: the three recession trough

dates used above, 1975:1, 1991:1, 2009:2 and in addition 1984:1. The impulse response function

in (20) implies a dependence on the local history of the variables. I add this specific date because

it represents a time when all four variables were growing rapidly. The additional date, therefore,

provides a natural counterpart to the three trough dates.

The responses in Figures 6 and 7 confirm the hunch that the two government stances imply
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different effects on output. In the active stance the spending cuts have no adverse output effects

in the longer run: it positively affects the private sector and outweighs the stresses and strains

from the debt reduction. When the government is in the passive stance, output decreases: even

though spending increases the government raises taxes swiftly and puts any positive incentives

for the private sector on hold.

Figure 7. Passive Government Stance

Notes: Counterfactual responses of output, government spending, net taxes and federal debts in
1975:1, 1984:1, 1991:1 and 2009:2. The experiment simulates a government that reduces debts by
adjusting taxes more quickly in response to higher expenditures. Computed along the lines of Section
2.3 and Canova and Gambetti (2009). Responses expressed in percentage changes.

The counterfactual responses in the recent 2009:2 period differ somewhat from other periods.

In Figure 6 the government reduces spending and, at same time, increases taxes by more than

in 1975:1, 1984:1 and 1991:1. This result is emblematic for the severe recession in 2008 and 2009

with extreme changes in all four variables which, in turn, require larger counterfactual responses

of the public sector variables in order to achieve a certain goal. Only output lags behind: the

counterfactual output response lies below the others at horizons beyond ten quarters. Also in
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the passive stance in Figure 7 one sees a much smaller negative output response in the 2009:2

period. The spending increase is accompanied by a less pronounced rise in taxes and a smaller

reduction of debts, thus the subdued effects on output.

The general message here is clear. A government that actively reduces debts by cutting

spending in a credible way provides enough incentives for the private sector to pitch in for the

government in the longer run. Passively reducing debts by just controlling the deficit through

tax adjustments does not seem to be good policy-making.

5. Conclusions

In this paper, I contribute to the recent literature on the effects of fiscal policy by highlight-

ing the time-variation in the transmission of government spending and tax shocks. My analysis

is cast in the time-varying parameter structural VAR framework of Primiceri (2005) which, with

a few exceptions, has been mainly used so far to study monetary policy. Specifically, I model

fiscal policy and the private sector behavior of the U.S. economy over the last four decades,

including data on output, government spending, net taxes and federal debts. Estimation re-

lies on an efficient Markov chain Monte Carlo algorithm, Gibbs sampling in particular, for the

numerical evaluation of the posterior distributions.

The main results accord well with the conventional wisdom of declining effectiveness of

changes in fiscal policy, with one qualification for taxes. Unlike other periods, the late 1980s

and early 1990s were characteristic for deficit-driven tax changes with the objective to reverse

the course of the surging debt-to-output ratio. The TVP-VAR uncovers this mid-period as the

one when tax policy was most effective, especially with respect to reducing the level of debts.

Overall, the amount and pattern of time-variation observed, makes a TVP-VAR an attractive

and natural choice for the empirical characterization of changes in fiscal policy.

From a methodological point of view the paper innovates upon the TVP-VAR literature in

one important aspect. It implements the widely used Blanchard and Perotti (2002) method to

identifying fiscal policy shocks into a TVP-VAR. The twist is, simply put, that identification

requires a non-recursive structure of the contemporaneous impact matrix, whereas Primiceri’s

(2005) framework relies on a triangular shape of that matrix. While Pereira and Lopes (2010)

are the first who provide a solution to this aspect, my reformulation of the problem is more

compatible with the estimation algorithm of Primiceri (2005). Whether the method of Blanchard

and Perotti (2002) is the best way to identifying the “true” underlying government spending and
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tax shocks was beyond the scope of this paper. In every case, their is plenty of room for more

ingenuity. An immediate extension would be to identify the shocks through sign restrictions as

in Mountford and Uhlig (2009), although eliciting better information on impulse responses is

by no means guaranteed as the identifying restrictions provide very weak information. On the

other hand, combing the new narrative-based tax measures, most notably Romer and Romer

(2010), with TVP-VARs is, perhaps, a more promising avenue for future research in order to

deal with identification issues. Especially the ones arising through fiscal foresight.

In addition to the methodological contribution, I use the counterfactual policy design of

Canova and Gambetti (2009) to study the effects of two different ways to reduce the level of

debts: actively by cutting spending and passively through budget surpluses obtained from tax

adjustments in response to past expenditure levels. In that respect, this counterfactual analysis

also bears on the policy debate about what should follow after the recent, mostly deficit-financed,

stimulus packages. As one may perhaps expect, the active government policy stance has hardly

any adverse effects on output. In fact, output tends to increase in the longer run. The passive

stance, on the other hand, has no positive effects on private sector behavior and, consequently,

output decreases. The differences arise through the way the government actions affect private

incentives. A government that reduces the debt burden in a credible and active way and, in the

same time, may increase its own efficiency provides enough positive incentives for the private

sector to more than compensate for the reduced public expenditures.
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