
Unit Root Testing in Heteroskedastic Panels using the Cauchy

Estimator∗

Matei Demetrescu† Christoph Hanck‡

May 19, 2011

Abstract

The Cauchy estimator of an autoregressive root uses the sign of the first lag as instrumen-
tal variable. The resulting IV t-type statistic follows a standard normal limiting distribution
under a unit root case even under unconditional heteroskedasticity, if the series to be tested
has no deterministic trends. The standard normality of the Cauchy test is exploited to obtain
a standard normal panel unit root test under cross-sectional dependence and time-varying
volatility with an orthogonalization procedure. The paper’s analysis of the joint N,T asymp-
totics of the test suggests that (1) N should be smaller than T and (2) its local power is
competitive with other popular tests. To render the test applicable when N is comparable
with, or larger than T , shrinkage estimators of the involved covariance matrix are used. The
finite-sample performance of the discussed procedures is found to be satisfactory.

Keywords: Integrated process, Time-varying variance, Nonstationary volatility, Asymptotic
normality, Cross-dependent panel, Joint asymptotics
JEL classification: C12 (Hypothesis Testing), C23 (Models with Panel Data)

1 Motivation

Instrumental variable [IV] estimation is typically used to deal with regressor endogeneity, but has

turned out to be a valuable tool in unit root econometrics as well. So and Shin (1999) showed that

the IV estimation procedure using the sign of the first lag as instruments for the lag itself has nice

properties: the t statistic based on this so-called Cauchy estimator has a standard normal limiting

distribution under i.i.d. innovations and stationary, unit, or explosive roots in the examined series.

In spite of standard asymptotics, the Cauchy test has nontrivial power in T−1-neighborhoods of

the unit root (Demetrescu and Hanck, 2011); and, unlike OLS based tests, the Cauchy test can

easily be used in a nonlinear or seasonal time series framework (Shin and Lee, 2001, 2003).

But (near-)integration is not the only form of nonstationarity data can exhibit: the data often

have time-varying variances even after taking logs. A prominent example is the so-called Great
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Moderation, i.e. the decline in the volatility of many economic variables towards the end of the

1900’s (Stock and Watson, 2002). Cavaliere (2004) shows that the null distribution of the ADF

test then depends on nuisance parameters. In contrast, Demetrescu and Hanck (2011) show the

Cauchy unit root test to be robust to such heteroskedasticity. And robustness to unconditional

heteroskedasticity is relevant for panel unit root tests just like it is for univariate tests: we

demonstrate in this paper that several popular second-generation panel unit root tests cease to

work reliably under unconditional heteroskedasticity in the time dimension.

The paper therefore studies the asymptotic behavior of panel unit root tests based on the

Cauchy estimator in panels with unconditionally heteroskedastic innovations as follows.

After briefly discussing the univariate case in Section 2, we establish in Section 3 standard

normality of the orthogonalization procedure proposed by Shin and Kang (2006) under joint

N,T -asymptotics. The cross-unit correlation is modeled by a factor structure of the errors,

allowing for strong cross-correlation and time-varying variance. The admissible rates for N ,

however, are required to be slower than T 1/5, also because Shin and Kang’s procedure requires

orthogonalization with an estimated N ×N covariance matrix. We also demonstrate the test to

have power against local alternatives of the form N−0.5T−1.

Finite sample simulations in Section 4 confirm the asymptotic predictions. The size is well-

controlled for cross-correlated panels exhibiting e.g. variance breaks at heterogenous times as long

as T is larger than N . We overcome this slight drawback by using shrinkage estimators of the

covariance matrix such that the test works reliably for larger N . Alternatively, combining single-

unit Cauchy statistics along the lines of Hartung (1999) leads to similarly reliable panel tests

under heteroskedasticity.

2 The univariate Cauchy unit root test

We begin by giving the necessary univariate background. The data generating process [DGP]

has the additive representation yt = m + xt, t = 1, . . . , T , where xt = ρxt−1 + ut, x0 fixed, with

possibly a unit root and ut a stable AR(p) process. We refer to Demetrescu and Hanck (2011)

for a more detailed discussion of other deterministic specifications and the assumptions as well as

univariate simulation evidence. With φ = ρ− 1, the unit root null is φ = 0 in the representation

∆xt = φxt−1 +
p∑
j=1

aj∆xt−j + εt. (1)

Recursive demeaning is required, as the cross-product of instrument and εt needs to be a martin-

gale difference [md] (see So and Shin, 1999); so instrument ỹµt−1 = yt−1− 1
t−1

∑t−1
j=1 yj by h

(
ỹµt−1

)
in the regression

∆yt = φ̂ỹµt−1 +
p∑
j=1

âj∆yt−j + ε̂t, (2)
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with ∆yt−j instrumenting themselves and h(·) a Huber-type instrument (asymptotically equivalent

to the sign) as in Shin and Kang (2006). The test statistic is tµIV = φ̂/s.e.
(
φ̂
)
. Following Cavaliere

and Taylor (2007), the εt are unconditionally heteroskedastic. But we relax their i.i.d. assumption:

Assumption 1. Let εt = σtεt, where σt = ω (t/T ) > 0 is bounded on [−∞; 1] and ω is piecewise

Lipschitz, and εt is md with uniformly bounded conditional (on {εt−1, εt−2, . . .}) densities such

that E(ε2t ) = 1, ∃r > 4 with supt E |εt|r <∞, and T−1
∑T

t=1

∑T
s=1 E

(∣∣ε̃2s − 1
∣∣∣∣ε̃2t − 1

∣∣) <∞.

Under Assumption 1, 1√
T
x[sT ] ⇒

(
´ 1
0 ω

2(r) dr)1/2

1−
Pp
j=1 aj

Jc (η(s)), a time-transformed OU process, where

η (s) =
(´ 1

0 ω
2 (r) dr

)−1 ´ s
0 ω

2 (r) dr. The distribution of tµIV is then given by

Proposition 1. Under (1), local alternatives φ = −c/T with c ≥ 0 and Assumption 1,

tµIV
d→
ˆ 1

0
sgn

(
J̃µc,η(s)

)
dW (η(s))− c

1−
∑p

j=1 aj

ˆ 1

0
sgn

(
J̃µc,η(s)

)
Jc (η(s)) ds

as T →∞, where J̃µc,η(s) = Jc (η(s))− 1
s

´ s
0 Jc (η(r)) dr and J̃µc,η(0) = 0 a.s. Under the null c = 0,

tµIV
d→ N (0, 1).

Proof: See Demetrescu and Hanck (2011).

Intuitively, heteroskedasticity-robustness is obtained because sgn discounts the large variabil-

ity of the lagged level to 1 or −1 irrespective of how the volatility process changes in t.

3 IV panel unit root tests

Let yi,t be the observed panel, generated as yi,t = mi + xi,t, i = 1, . . . , N, t = 1, . . . , T . The

stochastic component xi,t is a unit-wise autoregression of order pi + 1 with a possible unit root:

∆xi,t = φixi,t−1 +
pi∑
j=1

aij∆xi,t−j + εi,t (3)

with uniformly (in i) bounded starting values. Under the unit root null, ρi = 1 or φi = 0. We

use for simplicity hi(·) ≡ h(·) ∀ i but allow the unit-specific DGPs to exhibit heterogenous pi with

finite maximal order (set “missing” aij in units with lower actual order to zero).

Assumption 2. Let supi pi 6 p, i = 1, . . . , N for some p not depending on T or N .

We demonstrate below that many popular second-generation panel unit root tests (e.g., Pesaran,

2007; Breitung and Das, 2005; Demetrescu et al., 2006; Moon and Perron, 2004) do not control size

under unconditional heteroskedasticity in the time dimension. On the contrary, the Cauchy test’s

univariate robustness to unconditional heteroskedasticity prevents such failure in the panel case
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as well. Now, the test suggested in Demetrescu et al. (2006) combines individual ADF tests, and

fails because of the ADF’s lack of robustness to unconditional heteroskedasticity; when replacing

ADF tests with Cauchy tests, the test works more reliably, see Section 4.

Under cross-sectional independence, panel tests can easily be built from the single-unit tests

tµIV,i due to their standard asymptotics; 1/
√
N
∑N

i=1 t
µ
IV,i for instance yields a standard normal

panel statistic. This holds when allowing for N →∞; but N →∞ is not necessary for normality.

Under cross-correlation, the Cauchy panel unit root test requires orthogonalization, since the

individual test statistics are correlated (Shin and Kang, 2006). Let εi,t = ∆yi,t−
∑p

j=1 aij∆yi,t−j
and εt = (ε1,t, . . . , εN,t)

′ be the prewhitened differences; as estimates aij , Shin and Kang (2006)

suggest using OLS estimates under the null ρi = 1. Then, compute the sample covariance ma-

trix Σ̂ε = 1
T−p

∑T
t=p+2 εtε

′
t and let Σ̂−1

ε = Γ̂ Γ̂ ′ be a suitable LU decomposition. Denote the

orthogonalized, prewhitened differences by ε∗t = Γ̂ ′εt. The orthogonalized statistics τ̂IV,i are

τ̂IV,i =

∑T
t=p+2 hi

(
ỹµi,t−1

)
ε∗i,t√∑T

t=p+2 h
2
i

(
ỹµi,t−1

) ,
where ε∗i,t are the N elements of ε∗t . According to Shin and Kang (2006), these are equivalent

to using as instruments transformations of the lagged levels standardized with the residual stan-

dard deviation, i.e. τ̂IV,i =
∑T

t=p+2 hi
(
ỹµi,t−1/σ̂ii

)
ε∗i,t/

√∑T
t=p+2 h

2
i

(
ỹµi,t−1/σ̂ii

)
, where σ̂2

ii is the ith

diagonal element of Σ̂ε; define τIV = (τ̂1,IV , . . . , τ̂N,IV )′ as the vector stacking the individual or-

thogonalized statistics. Under their conditions, the asymptotic distribution of τIV is multivariate

normal with zero mean and unity covariance matrix for fixed N . The following panel tests studied

by Shin and Kang are also available under our assumptions:

τ IV = N−1/2
N∑
i=1

τ̂IV,i,

as well as the Fisher-type statistic PIV = −2
∑N

i=1 ln
(
Φ(τ̂IV,i)

)
, with Φ the standard normal cdf.

We do not study their Wald-type statistic WIV , which, being two-sided, has lower power.

Under the simplifying assumption of a fixed N , a panel test could be seen as rather a time

series problem. While we do not share the view that such assumptions—to make asymptotics

more tractable—render tests unusable, they obviously do not cover all possible N,T combinations,

and we now provide a joint asymptotic analysis. We require panel-specific assumptions regarding

the innovations; concretely, we assume a factor structure of the panel innovations.

Assumption 3. Let εt := Λ′νt + ε̃t with Λ = {λ′i}i=1,...,N a deterministic matrix such that

(a) λi ∈ RL \ 0L ∀i, 1 ≤ L fixed, and N−1Λ′Λ→ Σ� > 0;

(b) ε̃i,t, i = 1, . . . , N and νl,t, l = 1, . . . , L, are independent and they all satisfy Assumption 1.
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Requirements similar to Assumption 3(a) have been used by Bai and Ng (2004), but they require

i.i.d. errors while we allow for unconditional heteroskedasticity: the innovations εt have at time

t a covariance matrix E
(
εtε
′
t

)
= Σ(t/T ), where Σ(t/T ) has the typical structure of a covariance

matrix in a factor model. Their “average” covariance is

Ω =
ˆ 1

0
Σ(s)ds.

The covariance matrix Σ(t/T ) is time-varying; but the sample covariance approaches Ω in a

certain sense as N,T →∞, so orthogonalization works asymptotically; see the following Lemma

and the proof of Proposition 2 for details. The panel exhibits strong cross-correlation: the matrix

norm
∥∥Ω∥∥ induced by the Euclidean vector norm is proportional to N under Assumption 3.

Lemma 1. It holds under Assumption 3 as N,T →∞ that∥∥∥∥∥∥ 1
T

T∑
t=p+2

εtε
′
t −Ω

∥∥∥∥∥∥ = Op
(
NT−0.5

)
.

Proof: See the Appendix.

The uniform higher-order cross-product moment conditions implied by independence of the id-

iosyncratic factors together with the summability conditions implied by Assumption 3(b) ensure

the degree of homogeneity across the panel that is sufficient for joint asymptotics. In the frame-

work of Shin and Kang (2006), fixed-N asymptotics do not resort to such assumptions since

T →∞ leads to joint normality, and correlation is the only form of cross-sectional dependence.

The main result of the section is given in the following Proposition about the behavior of τ IV
under joint asymptotics.

Proposition 2. Under Assumptions 2 and 3, it holds as N,T →∞ such that N/T 1/5 → 0 that

τ IV
d→ N (0, 1)

Proof: See the Appendix.

Remark 1. Assumption 3(b) could be slightly relaxed at the cost of more restrictions on the rate

for for N : the less approximation error (cf. the proof of Proposition 2) is present in each single-

unit statistic, the smaller their effect cumulated across the panel, and the more units (i.e. higher

N -rates) can be considered without affecting τ IV ’s asymptotic standard normality under the null.

The gain in generality is small, however, and we do not pursue this topic here.

Remark 2. It would alternatively be possible to construct a GLS-type panel test based on

orthogonalizing the panel innovations at each time t with estimates of the time-dependent covari-

ance matrix E (εtε′t) , similar to the use of an estimated ω in the univariate case as in Boswijk

(2005). The key issue in our case is to estimate E (εtε′t) so as to preserve the mds property of the

orthogonalized innovations; conveniently, Boswijk (2005) uses adaptive (recursive) estimation.
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The upper bound N = o
(
T 1/5

)
suggests that T should be much larger than N in small samples

too; it is the consequence of having to estimate N(N − 1)/2 covariances and computing an LU

decomposition. And N must be in any case smaller than T to ensure positive definiteness of

the sample covariance matrix. Should N > T , it suggests itself to make simplifying assumptions

about Σ̂ε to ensure a positive definite estimate. E.g. Hartung (1999) assumes equicorrelation; his

method allows to easily combine standard normal t-type statistics, and it is only natural to do so

with the dependent single unit statistics tµIV,i. The simplification is extreme, but the method is

quite robust to deviations from equicorrelation; cf. Hartung (1999) and Demetrescu et al. (2006).

Alternatively, we can use shrinkage covariance estimators; see the following section.

Remark 3. Given the assumed rate of N = o
(
T 1/5

)
, one stationary unit with tµIV,i diverging at

rate
√
T ensured by a fixed fraction of the units being under the alternative.

Panel tests have been shown to have higher power than their univariate counterparts. E.g. the

first-generation test by Im et al. (2003) has power against alternatives ρi = 1−ci/
√
NT 2. The local

power of the panel Cauchy test in general depends on nuisance parameters in the cross-dependent

case due to the orthogonalization step. But it has nontrivial power in 1/
√
NT 2 neighborhoods of

the null as well, as the following proposition for the case of cross-sectional independence indicates.

Proposition 3. Let ρi = 1− ci√
NT 2

with 0 ≤ ci ≤ C ∀i. Under Assumptions 2 and 3 with Λ = O,

it holds as N,T →∞ such that N/T 1/5 → 0 that

τ IV
d→ N (−µ, 1) ,

where µ = limN→∞
1
N

∑N
i=1

ciµi
1−
Pp
j=1 ai,j

, with µi = E
(´ 1

0 sgn
(
W̃µ
ηi (s)

)
W (ηi (s)) ds

)
and W̃µ

ηi =

W (ηi (s))− 1
s

´ s
0 W (ηi (r)) dr (the recursively demeaned time-transformed Wiener process).

Proof: See the Appendix.

Thus, τ IV has good local power properties. In particular, for homoskedastic (ηi(s) = s) and

homogenous (ci = c) alternatives without short-run dynamics (ai,j = 0), we obtain µ = cµ with

µ = E
(´ 1

0 sgn
(
W̃µ (s)

)
W (s) ds

)
. By simulation, we find µ ≈ 0.461. Hence, τ IV has higher

local power than the IPS test of Im et al. (2003), for which Harris et al. (2010) find µ ≈ 0.282

under a negligible initial condition, the most favorable case for the Im et al. (2003) test.

4 Small-sample behavior

Since we fit a constant throughout, we assume w.l.o.g. that E (yi,t) = 0 in our DGP:

yi,t = ρiyi,t−1 + εi,t i = 1, . . . , N, t = 1, . . . , T

The variance-breaking error processes are independent normal variates ε̃i,t, where Var(ε̃i,t) = 1

for t = 1, . . . , bζiT c and Var(ε̃i,t) = 1/δ2 for t = bζiT c+ 1, . . . , T . We consider δ ∈ {1/5, 1, 5} and
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take ζi = ζ ∈ {0.1, 0.5, 0.9} or draw heterogeneous break dates randomly at ζi ∼ U [0.1, 0.9]. We

consider two patterns of cross-sectional correlation among the εi,t: A. Independence: εi,t = ε̃i,t.

B. Factor Structure: εi,t := λi · νt + ε̃i,t, where νt are i.i.d. N (0, 1) and λi ∼ U(−1, 3). When

(φ1, . . . , φN )′ = 0N , we study the size of the tests. To analyze power, we draw the φi from the

uniform distribution on [−0.1, 0].

Table 1: Size and Power of Second Generation Panel Tests

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .031 .053 .063 .012 .070 .110 .123 .031 .057 .078 .101 .119 .130 .157 .205 .262

S 100 .030 .084 .069 .016 .153 .306 .234 .093 .061 .092 .108 .132 .268 .395 .454 .534
200 .028 .087 .062 .015 .451 .629 .546 .401 .058 .111 .109 .125 .667 .880 .916 .971

50 .086 .035 .026 .011 .181 .104 .140 .047 .078 .042 .032 .020 .178 .132 .150 .135
CIPS? 100 .078 .026 .026 .010 .394 .372 .542 .603 .069 .024 .027 .018 .379 .335 .529 .603

200 .069 .020 .033 .014 .847 .930 .992 1.00 .064 .028 .033 .017 .769 .890 .985 .999

50 .044 .077 .113 .030 .102 .187 .195 .076 .024 .024 .006 .002 .127 .184 .207 .249
DHT 100 .044 .107 .107 .034 .219 .416 .328 .205 .024 .013 .004 .000 .348 .578 .752 .903

200 .038 .123 .098 .034 .579 .748 .724 .658 .026 .014 .005 .001 .785 .980 .996 1.00

50 .163 .115 .105 .100 .529 .691 .738 .633 .119 .114 .115 .097 .557 .722 .890 .971
MPb 100 .172 .152 .120 .120 .710 .899 .853 .764 .148 .129 .111 .108 .822 .931 .992 .999

200 .163 .158 .152 .131 .800 .950 .916 .885 .138 .138 .109 .109 .934 .985 .998 1.00
δ = 1

50 .045 .042 .036 .041 .070 .066 .058 .066 .051 .048 .050 .045 .081 .077 .072 .083
S 100 .044 .048 .041 .040 .145 .121 .118 .119 .049 .053 .048 .047 .166 .164 .175 .179

200 .046 .040 .040 .039 .464 .471 .445 .439 .045 .044 .053 .045 .579 .651 .700 .754

50 .104 .054 .080 .069 .185 .130 .189 .188 .107 .066 .082 .076 .214 .189 .251 .266
CIPS? 100 .097 .051 .069 .062 .415 .489 .698 .824 .116 .061 .076 .072 .422 .492 .692 .816

200 .099 .047 .068 .061 .881 .985 1.00 1.00 .102 .053 .074 .065 .808 .955 .992 1.00

50 .068 .071 .071 .078 .102 .105 .096 .109 .059 .085 .087 .099 .121 .124 .113 .123
DHT 100 .069 .082 .074 .080 .209 .207 .220 .223 .062 .080 .082 .096 .243 .282 .306 .309

200 .066 .072 .075 .072 .586 .668 .662 .693 .061 .072 .085 .092 .716 .873 .918 .959

50 .113 .069 .055 .060 .572 .706 .771 .843 .091 .055 .053 .049 .619 .870 .934 .980
MPb 100 .102 .088 .064 .060 .724 .830 .866 .894 .095 .065 .058 .051 .827 .955 .979 .995

200 .110 .089 .080 .071 .845 .922 .936 .955 .098 .074 .057 .067 .923 .982 .996 .997
δ = 5

50 .052 .080 .047 .186 .070 .093 .072 .174 .188 .193 .270 .375 .138 .139 .165 .196
S 100 .052 .100 .070 .228 .143 .173 .133 .269 .209 .215 .269 .382 .229 .235 .254 .313

200 .073 .113 .071 .247 .456 .480 .442 .570 .203 .223 .298 .392 .602 .696 .750 .789

50 .448 .697 .904 .847 .374 .443 .610 .691 .449 .391 .540 .764 .438 .430 .614 .772
CIPS? 100 .515 .770 .938 .905 .618 .815 .945 .983 .488 .431 .611 .826 .608 .736 .900 .979

200 .535 .792 .951 .929 .944 .999 1.00 1.00 .514 .461 .645 .842 .869 .972 .994 1.00

50 .073 .114 .085 .249 .099 .133 .118 .213 .208 .213 .241 .280 .171 .154 .154 .159
DHT 100 .072 .137 .109 .286 .194 .249 .223 .334 .227 .229 .242 .270 .291 .317 .310 .325

200 .098 .158 .110 .303 .575 .631 .623 .693 .219 .228 .251 .267 .709 .848 .892 .917

50 .078 .036 .030 .037 .556 .614 .641 .814 .058 .039 .035 .029 .574 .822 .907 .955
MPb 100 .085 .065 .039 .038 .686 .779 .755 .908 .068 .046 .040 .034 .799 .934 .963 .980

200 .084 .058 .051 .042 .781 .887 .871 .971 .067 .050 .037 .039 .893 .970 .984 .993

Nominal 5% level. 5000 replications. ζi ∼ U [0.1, 0.9]. S is from Hanck (201x), CIPS? is from Pesaran (2007),
DHT from Demetrescu et al. (2006) and MPb is from Moon and Perron (2004).

7



Table 1 reports results for some second-generation tests (i.e. tests robust to cross-sectional

dependence, but that are not designed to handle nonstationary volatility) for ζi ∼ U [0.1, 0.9].

Similar results for the other DGPs described above are available upon request. All tests handle

the benchmark homoskedastic case δ = 1. (For δ = 1, the small-sample size distortions arise for

instance because Pesaran (2007) tabulates critical values starting with N = 10, and we employ

these for N = 6.) The panels for the variance breaks δ = 1/5 and δ = 5 however clearly demon-

strate that second-generation tests do not yield valid inference under nonstationary volatility.

We therefore now turn our attention to robust tests. As regards τ IV , the issue of interest is

the behavior of the orthogonalization procedure, so we simulate without short-run dynamics. We

nevertheless include one lagged difference to capture the effect of not knowing the true lag order

in practice. Hartung’s (1999) approach to capture cross-sectional dependence assumes constant

correlation. He proposes to estimate the off-diagonal element ξ of the correlation matrix by

ξ̂∗ = max(−1/(N − 1), ξ̂), where ξ̂ = 1 − 1/(N − 1)
∑N

i=1

(
tµIV,i − N−1

∑N
i=1 t

µ
IV,i

)2 to form the

panel test statistic:

tξ̂∗,κ =

∑N
i=1 t

µ
IV,i√

N + (N2 −N)
(
ξ̂∗ + κ

√
2

N+1(1− ξ̂∗)
) ;

here, κ = 0.1 · (1 + 1/(N + 1)− ξ̂∗) improves the small sample behavior of tξ̂∗,κ. The test rejects

for large negative values using standard normal critical values; see also Demetrescu et al. (2006).

Table 2 reports rejection rates for Shin and Kang’s (2006) τ IV , PIV and tξ̂∗,κ based on the

tµIV,i. Size is well-controlled under both independence and cross-sectional dependence; τ IV is

somewhat more accurate than PIV or tξ̂∗,κ. As to power, all tests are consistent as T → ∞
for any configuration of ζ and δ; power increases in N for T sufficiently large. Once more, τ IV
emerges as the most attractive choice: its power tends to be higher than that of the other tests,

although there are cases where PIV is more powerful. The tξ̂∗,κ test seems to have lower power.

As pointed out above, the key drawback of τ IV is the requirement that T > N for Σ̂−1
ε to

exist. This may not be the case in practice. Moreover, if T is only moderately larger than N , the

finite-sample performance of τ IV will suffer. We therefore employ a recent proposal by Ledoit and

Wolf (2004) to estimate Σ̂ε allowing in principle any configuration of T and N . They propose to

construct a weighted version of Σ̂ε and the identity matrix I, ST = κ1T I + κ2T Σ̂ε. Specifically,

κ1T and κ2T are constructed as follows. Define

b̄2T =
1
N

 T∑
t=p+2

(
ε′tεt
T

)2

− 1
T

tr(Σ̂2
ε )

 .
Further, mT = tr(Σ̂ε)/N , d2

T = tr[(Σ̂ε − mT I)(Σ̂ε − mT I)′]/N , b2T = min(b̄2T , d
2
T ) and a2

T =

d2
T − b2T . Then, κ1T = mT · b2T /d2

T and κ2T = a2
T /d

2
T . The full-rank matrix I ensures that ST is

invertible even if T < N . The (generally misspecified, but invertible) structure imposed by adding
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Table 2: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .054 .049 .039 .044 .175 .244 .235 .159 .043 .042 .038 .029 .268 .400 .454 .387

τ IV 100 .053 .059 .055 .045 .359 .526 .510 .456 .047 .040 .040 .034 .608 .840 .951 .984
200 .049 .058 .052 .052 .593 .852 .840 .843 .048 .047 .049 .040 .922 .996 1.00 1.00

50 .047 .047 .047 .041 .172 .228 .236 .170 .037 .038 .032 .035 .195 .287 .347 .342
PIV 100 .049 .057 .051 .043 .392 .534 .600 .648 .042 .037 .039 .032 .496 .746 .891 .953

200 .049 .052 .053 .048 .701 .900 .935 .971 .045 .042 .043 .041 .882 .992 1.00 1.00

50 .049 .059 .054 .041 .105 .106 .099 .113 .040 .035 .029 .023 .133 .135 .135 .110
tξ̂∗,κ 100 .055 .066 .062 .048 .255 .265 .237 .287 .047 .043 .037 .025 .290 .336 .359 .379

200 .061 .072 .054 .049 .574 .606 .619 .690 .045 .043 .037 .028 .659 .807 .892 .964
δ = 1

50 .046 .046 .045 .048 .177 .219 .243 .214 .041 .034 .035 .027 .268 .417 .489 .439
τ IV 100 .048 .050 .048 .051 .363 .483 .566 .664 .046 .043 .036 .034 .566 .850 .932 .978

200 .048 .047 .050 .054 .636 .830 .905 .969 .051 .052 .044 .042 .897 .992 .999 1.00

50 .041 .038 .041 .043 .169 .225 .248 .219 .034 .031 .031 .030 .211 .324 .393 .396
PIV 100 .043 .044 .044 .042 .395 .581 .672 .758 .042 .039 .037 .032 .498 .790 .906 .966

200 .049 .048 .047 .046 .754 .942 .979 .998 .047 .046 .040 .039 .883 .992 1.00 1.00

50 .046 .038 .038 .035 .120 .111 .110 .109 .042 .049 .045 .041 .142 .126 .124 .098
tξ̂∗,κ 100 .053 .051 .049 .046 .271 .301 .305 .319 .051 .057 .060 .055 .318 .378 .409 .414

200 .057 .059 .054 .050 .624 .725 .717 .760 .055 .054 .063 .065 .726 .877 .931 .967
δ = 5

50 .045 .041 .039 .040 .173 .176 .157 .192 .040 .033 .029 .029 .192 .315 .362 .311
τ IV 100 .049 .045 .048 .041 .338 .353 .369 .553 .048 .037 .038 .032 .411 .678 .784 .852

200 .048 .049 .049 .043 .507 .630 .716 .883 .046 .046 .043 .041 .714 .949 .985 .996

50 .038 .032 .030 .038 .197 .246 .247 .198 .034 .028 .028 .028 .154 .258 .315 .283
PIV 100 .047 .037 .035 .039 .444 .567 .676 .656 .040 .032 .030 .029 .384 .673 .795 .876

200 .047 .044 .040 .038 .697 .877 .964 .962 .044 .043 .039 .036 .734 .971 .995 1.00

50 .046 .037 .034 .021 .106 .096 .114 .071 .046 .046 .042 .047 .108 .101 .091 .087
tξ̂∗,κ 100 .047 .050 .047 .031 .258 .226 .260 .179 .054 .064 .060 .063 .266 .304 .310 .320

200 .058 .057 .053 .049 .555 .531 .598 .493 .062 .077 .077 .080 .610 .768 .832 .859

Nominal 5% level. 5000 replications. ζi ∼ U [0.1, 0.9].

κ1T I to the unbiased estimator Σ̂ε introduces a finite-sample bias in ST . Yet, the weights κ1T

and κ2T are optimal in the sense that ST asymptotically (for N,T → ∞ jointly) has minimum

expected loss in a class of linear combinations of I and Σ̂ε. Ledoit and Wolf (2004) show the

joint asymptotics to be a good guide in finite samples, including the case T < N . Moreover, the

following lemma shows ST to converge to Ω at the same rate as Σ̂ε under the assumptions of

Proposition 2, so it can be safely used for the test of Shin and Kang (2006).

Lemma 2. Under the assumptions of Proposition 2, it holds that∥∥ST −Ω∥∥ = Op
(
NT−0.5

)
.

Proof: See the Appendix.

We now present additional simulations gauging the effectiveness of Shin and Kang’s (2006)

tests using shrinkage, allowing us to also consider the case T < N . Table 3 reports rejection
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Table 3: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests with shrinkage

Independence Factor Structure
Size Power Size Power

T N 16 26 56 106 16 26 56 106 16 26 56 106 16 26 56 106

δ = 1/5
50 .024 .035 .007 .020 .144 .217 .090 .253 .034 .036 .023 .014 .422 .682 .820 .930

τ IV 100 .033 .041 .019 .032 .419 .588 .472 .813 .039 .040 .036 .024 .888 .987 1.00 1.00
200 .039 .048 .038 .044 .746 .913 .882 .998 .043 .047 .038 .028 .999 1.00 1.00 1.00

50 .006 .006 .000 .000 .057 .058 .002 .001 .015 .013 .001 .000 .201 .367 .301 .195
PIV 100 .014 .013 .001 .000 .431 .458 .441 .328 .018 .022 .005 .000 .730 .929 .979 .996

200 .029 .028 .014 .006 .873 .946 .977 .997 .030 .031 .011 .003 .995 1.00 1.00 1.00

50 .045 .049 .040 .048 .106 .099 .114 .092 .032 .028 .020 .020 .143 .134 .092 .050
tξ̂∗,κ 100 .053 .052 .044 .052 .254 .251 .285 .248 .039 .032 .028 .024 .351 .363 .335 .364

200 .053 .069 .055 .063 .643 .630 .691 .666 .043 .035 .029 .029 .803 .910 .962 .997
δ = 1

50 .034 .030 .016 .005 .190 .215 .198 .137 .029 .024 .009 .001 .405 .484 .551 .463
τ IV 100 .039 .037 .034 .026 .488 .562 .672 .731 .041 .032 .027 .014 .843 .933 .986 .996

200 .041 .048 .048 .046 .817 .892 .973 .995 .044 .044 .041 .039 .993 .999 1.00 1.00

50 .013 .007 .000 .000 .124 .115 .032 .000 .013 .008 .000 .000 .238 .259 .138 .002
PIV 100 .025 .020 .010 .001 .536 .623 .658 .459 .031 .022 .011 .001 .760 .877 .959 .950

200 .034 .036 .029 .018 .929 .974 .997 1.00 .038 .036 .032 .019 .996 .999 1.00 1.00

50 .043 .039 .034 .027 .106 .108 .107 .103 .040 .042 .044 .034 .131 .109 .082 .059
tξ̂∗,κ 100 .051 .045 .040 .045 .314 .305 .318 .321 .047 .056 .059 .057 .391 .404 .403 .424

200 .055 .057 .047 .051 .702 .718 .763 .775 .061 .064 .073 .073 .879 .925 .975 .987
δ = 5

50 .014 .017 .009 .001 .134 .168 .193 .092 .025 .020 .005 .001 .275 .319 .344 .261
τ IV 100 .026 .026 .028 .007 .359 .442 .595 .588 .033 .032 .019 .009 .627 .743 .890 .929

200 .040 .041 .034 .022 .614 .784 .931 .957 .038 .037 .032 .025 .933 .980 .998 1.00

50 .003 .002 .000 .000 .073 .054 .017 .000 .010 .004 .000 .000 .146 .131 .038 .000
PIV 100 .010 .006 .003 .000 .469 .446 .432 .269 .022 .015 .004 .000 .578 .704 .808 .676

200 .023 .019 .013 .001 .833 .908 .970 .979 .029 .027 .019 .006 .955 .991 1.00 1.00

50 .042 .028 .019 .035 .100 .086 .053 .106 .048 .048 .047 .039 .098 .097 .077 .077
tξ̂∗,κ 100 .047 .042 .032 .038 .249 .211 .189 .280 .068 .070 .067 .067 .286 .322 .312 .305

200 .059 .050 .042 .050 .589 .533 .521 .665 .066 .074 .082 .080 .752 .805 .858 .888

Nominal 5% level. 5000 replications. ζi ∼ U [0.1, 0.9].

rates for N ∈ {16, 26, 56, 106}. The PIV test is now sometimes drastically undersized especially

for N � T . Reassuringly, this does not destroy its consistency as PIV remains powerful at least

for large T . On the other hand, τ IV mostly performs quite well even with shrinkage and in

cases where N > T , although predictably somewhat less accurately than when one can use an

estimator Σ̂ε that unbiasedly estimates the true covariance matrix. In terms of size, tξ̂∗,κ not

requiring shrinkage emerges as a serious competitor when N > T . However, τ IV is substantially

more powerful than tξ̂∗,κ for small and intermediate T whenever size is comparable. Overall, these

results lead us to recommend to employ τ IV in cross-dependent panels.
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5 Concluding remarks

The Cauchy estimator, for which the sign of the lagged level instruments the lagged level it-

self, yields a unit root test with an asymptotic standard normal null distribution even under

unconditional heteroskedasticity.

The paper showed that the features of the Cauchy test extend in cross-dependent, het-

eroskedastic panels. In particular, we prove the panel unit root test due to Shin and Kang

(2006) to be robust to unconditional heteroskedasticity. Moreover, the test was shown to be

locally more powerful than the IPS test of Im et al. (2003).

The assumptions under which joint N,T asymptotics hold suggested that N should be smaller

than T . To extend the applicability of the panel test to situations where T is comparable to,

or smaller than, N , we proposed the use of shrinkage covariance matrix estimators. The test

performed well in small samples.

Proofs

Note: Sums run from t = p+ 2 to T unless specified otherwise, and C stands for a generic constant.

Proof of Lemma 1

Note that it suffices to show that T−1
∑
εi,tεj,t is

√
T -consistent at a uniform rate over 1 ≤ i, j ≤ N (recall

that the norm of an N ×N matrix with uniformly bounded elements is O (N)). To this end, we make use
of the factor structure of the innovations. We namely have that

T−1
∑

εi,tεj,t = T−1
∑

λ′iνtν
′
tλj + T−1

∑
λ′iνtε̃j,t + T−1

∑
ε̃i,tλ

′
jνt + T−1

∑
ε̃i,tε̃j,t.

Now,

Var
(
T−1

∑
ε̃2i,t − ω2

i

)
= Var

(
T−1

∑
ε̃2i,t − T−1

∑
ω2
i (t/T )

)
= T−2

T∑
t=p+2

T∑
s=p+2

ω2
i (t/T )ω2

i (s/T ) E
((
ε̃2i,t − 1

) (
ε̃2i,s − 1

))
;

using the obvious uniform boundedness of ωi across the panel, we obtain that

Var
(

1
T

∑
ε̃2i,t − ω2

i

)
≤ C

T 2

T∑
t=p+2

T∑
s=p+2

E
(∣∣ε̃2i,t − 1

∣∣ ∣∣ε̃2i,s − 1
∣∣)

irrespective of i. The same reasoning applies to the other cross-products as well, leading with the summa-
bility conditions in Assumption 3 (b) to sup1≤i,j≤N Var

(
T−1

∑
εi,tεj,t −Ωi,j

)
≤ C/T . Thus the sample

covariances of εt are
√
T -consistent for the respective elements of Ω; as required.

Proof of Proposition 2

Let us first analyze the behavior of the sample covariance matrix of εt, Σ̂ε = T−1
∑
εtε
′
t. Note that

εi,t = εi,t + Op
(
T−0.5

)
(whether estimating by imposing the unit root or not); we have at the assumed
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maximal rate for N that
∥∥ 1
T

∑
εtε
′
t − 1

T

∑
εtε
′
t

∥∥ = Op
(
NT−0.5

)
, so, considering Lemma 1, it follows that∥∥Σ̂ε −Ω

∥∥ = Op
(
NT−0.5

)
. (4)

Making now use of Equation (11b) from Lütkepohl (1996, p. 107), we have that

∥∥∥Σ̂−1
ε −Ω

−1
∥∥∥ ≤

∥∥∥Σ̂ε −Ω
∥∥∥ ∥∥∥Ω−1

∥∥∥2

1−
∥∥∥Ω−1

(
Σ̂ε −Ω

)∥∥∥ .
Due to the factor structure of the innovations, Ω has eigenvalues bounded away from 0, hence

∥∥Ω−1∥∥ < C;
considering that

∥∥Σ̂ε − Ω
∥∥ p→ 0, the denominator of the r.h.s. converges in probability to 1 and the

numerator to 0 at rate Op(NT−0.5). This implies the same convergence rate of each of the elements of
Σ̂−1
ε and of Γ̂ ′. Denote by Γ ′ the LU decomposition of Ω

−1
and note that ‖Γ ‖ < C as well. Since the

elements of Γ̂ ′ are consistent at rate Op(NT−0.5), it follows that
∥∥Γ̂ − Γ∥∥ = Op(N2T−0.5). Moving on to

the main part of the proof, we have with hi
(
ỹµi,t−1

)
= hi

(
x̃µi,t−1

)
that

τ IV =
1√
N

N∑
i=1

∑
hi
(
x̃µi,t−1

)
ε∗i,t√∑

h2
i

(
x̃µi,t−1

) .
With Lemma A.1B from Demetrescu and Hanck (2011) [DH] we have that h2

i

(
x̃µi,t−1

)
= 1 +Op(t−0.5) and

hence
∑
h2
i

(
x̃µi,t−1

)
= T +Op(T 0.5). Since, as can easily be deduced using the same arguments as for the

derivations below,
∑
hi
(
x̃µi,t−1

)
ε∗i,t = Op(

√
T ), it follows from dividing denominator and numerator by

1/
√
T and using a Taylor expansion that∑

hi
(
x̃µi,t−1

)
ε∗i,t√∑

h2
i

(
x̃µi,t−1

) =
1√
T

∑
hi
(
x̃µi,t−1

)
ε∗i,t +Op(T−0.5);

furthermore, with obvious notation ht =
(
hi
(
x̃µi,t−1

))′
i=1,...,N

,

τ IV =
1√
TN

N∑
i=1

∑
hi
(
x̃µi,t−1

)
ε∗i,t +Op

(
T−0.5N0.5

)
=

1√
TN

N∑
i=1

∑
hi
(
x̃µi,t−1

)
ε∗i,t + op(1) =

1√
TN

∑
h′tΓ̂

′εt + op(1).

We further have that 1√
TN

∑
h′tΓ̂

′εt = 1√
TN

∑
h′tΓ

′εt + 1√
TN

∑
h′t
(
Γ̂ ′ − Γ ′

)
εt. Now,

1√
TN

∑
h′t
(
Γ̂ ′ − Γ ′

)
εt = tr

(
1√
N

(
1√
T

∑
εth′t

)(
Γ̂ ′ − Γ ′

))
;

using arguments analog to those used for Lemma A.1E in DH we conclude that for all 1 ≤ k, i ≤ N ,∑
hk

(
x̃µk,t−1

)
εi,t =

∑
hk

(
x̃µk,t−1

)(
∆yi,t −

∑
j
aij∆yi,t−j

)
=

∑
hk

(
x̃µk,t−1

)(∑
j
(aij − aij)∆xi,t−j + εi,t

)
=

∑
hk

(
x̃µk,t−1

)
εi,t + op(T 0.25).

So the elements of the N ×N matrix T−1/2
∑
εth′t are uniformly bounded in probability, and∥∥∥N−1/2

(
T−1/2

∑
εth′t

) (
Γ̂ ′ − Γ ′

)∥∥∥ ≤ N−1/2
∥∥∥T−1/2

∑
εth′t

∥∥∥∥∥∥Γ̂ ′ − Γ ′∥∥∥ = Op(N2.5T−0.5).
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The norm on the l.h.s. thus vanishes, implying that the trace vanishes too. Summing up, we have that

τ IV =
1√
TN

∑
h′tΓ

′εt + op(1).

Using again Lemma A.1E in DH as above, it follows immediately that τ IV = 1√
TN

∑
h′tΓ

′εt + op(1);

letting ıt =
(
sgni

(
x̃µi,t−1

))′
i=1,...,N

and employing Lemma A.1C in DH, we have furthermore that

τ IV =
1√
TN

∑
ı′tΓ
′εt + op(1).

N−0.5ı′tΓ
′εt is a md array; given the finiteness of its 4th order moments (cf. Assumption 3), the second

condition of the CLT for md arrays (Davidson, 1994, Thm. 24.3) is fulfilled; checking the first condition
amounts to showing that T−1

∑(
N−0.5ı′tΓ

′εt
)2 p→ 1: write the quantity as 1

NT

∑
ı′tΓ
′εtε

′
tΓ ıt and recall

that
∥∥T−1

∑
εtε
′
t − (ΓΓ ′)−1∥∥ = Op

(
T−0.5N

)
, and the result follows.

Proof of Proposition 3

Begin by examining, like in the proof of Proposition 2, the quantity

1√
NT

∑
h′tΓ̂

′εt =
1√
NT

∑
h′tΓ

′εt + tr
(

1√
N

(
1√
T

∑
εth′t

)(
Γ̂ ′ − Γ ′

))
.

We show that the trace vanishes under the local alternative as well. Namely,∑
hk

(
x̃µk,t−1

)
εi,t =

∑
hk

(
x̃µk,t−1

)(
εi,t −

ci√
NT 2

xi,t−1

)
+

p∑
j=1

(aij − aij)
∑

hk

(
x̃µk,t−1

)
∆xi,t−j

for all 1 ≤ i, k ≤ N. With xi,t−1/
√
T uniformly L2-bounded, we have as in Lemma A.1E in DH that∑

hk

(
x̃µk,t−1

)
εi,t =

∑
hk

(
x̃µk,t−1

)(
εi,t −

ci√
NT 2

xi,t−1

)
+ op

(
T 0.25

)
= Op

(√
T
)
.

Note that εi,t = εi,t +Op
(
T−0.5

)
holds under the considered local alternative too, so the proof of Lemma

1 still applies leading to
∥∥Γ̂ − Γ∥∥ = Op

(
N2T−0.5

)
, and the trace does indeed vanish like in the proof of

Proposition 2. Use now the Cauchy-Schwarz inequality and Lemma A.1B in DH together with the uniform
L2-boundedness of xk,t−1/

√
T (in t and i) to establish that

E

∣∣∣∣∣ 1√
N2T 3

N∑
i=1

∑(
hk

(
x̃µk,t−1

)
− sgn

(
x̃µk,t−1

))
xi,t−1

∣∣∣∣∣ = o(1);

letting C = diag (ci) (the diagonal matrix with diagonal elements ci) and recalling that Γ = diag
(
ω−1
i

)
,

we have as in the proof of Proposition 2 that

τ IV =
1√
NT

∑
h′tΓ

′
(
εt −

1√
NT 2

Cxt−1

)
+ op(1)

=
1√
NT

∑
ı′tΓ
′εt −

1√
N2T 3

N∑
i=1

ci
∑

sgn
(
x̃µi,t−1

) xi,t−1

ωi
+ op(1).

The proof of Proposition 2 shows that 1√
NT

∑
ı′tΓ
′εt ∼ N (0, 1) as N,T → ∞ with N = o(T 0.2), so we

only need to examine the noncentrality term of τ IV ’s asymptotic distribution: use the independence of the
units and the uniform L2-boundedness (in i) of 1

T

∑
sgn

(
x̃µi,t−1

) xi,t−1√
T

to conclude that

1
NT

N∑
i=1

ci
∑

sgn
(
x̃µi,t−1

) xi,t−1

ωi
√
T

=
1
N

N∑
i=1

ci
ωi

E
(

1
T

∑
sgn

(
x̃µi,t−1

) xi,t−1√
T

)
+Op

(
1√
N

)
,
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so the result follows if E
(

1
T 1.5

∑
sgn

(
x̃µi,t−1

)
xi,t−1

)
→ ωi

Ai
E
(´ 1

0
sgn

(
W̃µ
ηi

(s)
)
W (ηi (s)) ds

)
, where Ai =

1−
∑p
j=1 ai,j . The Beveridge-Nelson decomposition and the uniform boundedness of the variances imply

E
∣∣∣xi,t − 1

Ai

∑t

j=0
ρjiεi,t−j

∣∣∣2 ≤ C. (5)

A Taylor series expansion for rα with rest term in differential form, rα = rα0 + α%α−1 (r − r0) with %
between r and r0, gives ρji = 1 + j%j−1

i (ρi − 1) for ρi ≤ %i ≤ 1. Recall, ρi = 1 − ci√
NT 2 , so ∃N0, T0 fixed

such that 0 < 1− ci√
NT 2 ≤ %i ≤ 1 for all N > N0 and T > T0; thus, 0 < %j−1

i < 1 ∀j. Hence,∣∣∣ρji − 1
∣∣∣ ≤ C√

NT 2
j for N and T large enough,

leading with Minkowski’s inequality and (5) to√
E
∣∣∣xi,t − 1

Ai

∑t

j=0
εi,t−j

∣∣∣2 ≤
√

E
∣∣∣xi,t − 1

Ai

∑t

j=0
ρjiεi,t−j

∣∣∣2 + C

√
E
∣∣∣∑t

j=0

(
ρji − 1

)
εi,t−j

∣∣∣2
≤ C√

NT 2

√∑t

j=0
j2 Var (εi,t−j) = C

√
T

N

uniformly in i and t, or to 1√
T
xi,t = 1

Ai

√
T

∑t
j=0 εi,t−j+Op

(
N−0.5

)
. Then, 1√

T
xi,t ⇒ ωi

Ai
W (ηi (s)), implying

1
T 1.5

∑
sgn

(
x̃µi,t−1

)
xi,t−1 ⇒

ωi
1−

∑p
j=1 ai,j

ˆ 1

0

sgn
(
W̃µ
ηi

(s)
)
W (ηi (s)) ds. (6)

To conclude about the convergence of the expectation of the l.h.s. to the expectation on the r.h.s. of (6),
note that the sequence 1

T 1.5

∑
sgn

(
x̃µi,t−1

)
xi,t−1 is uniformly L2-bounded (in t as well as in i) and as such

uniformly integrable so convergence of the expectations holds, as required for the result.

Proof of Lemma 2

Since
∥∥ST −Ω∥∥ ≤ ∥∥ST − Σ̂ε

∥∥+
∥∥Σ̂ε−Ω

∥∥, we only have to prove that
∥∥ST − Σ̂ε

∥∥ = Op
(
NT−0.5

)
thanks

to (4). With
∥∥I∥∥ = 1,

∥∥ST − Σ̂ε

∥∥ ≤ |κ1T | + |κ2T − 1|
∥∥Σ̂ε

∥∥. Since
∥∥Σ̂ε

∥∥ = Op (N), |κ2T − 1| = b2T /d
2
T

and mT = 1
N tr

(
Σ̂ε

)
= 1

NT

∑∑N
i=1 ε

2
it = Op(1), proving

∥∥ST − Σ̂ε

∥∥ = Op
(
NT−0.5

)
reduces to showing

b2T
d2
T

= Op
(
T−0.5

)
.

An upper bound for b2T is derived as follows. Recall, b2T = min(b̄2T , d
2
T ) with b̄2T =

(∑(
ε′tεt/T

)2 −
tr
(
Σ̂2
ε

)
/T
)
/N . Due to the symmetry of Σ̂ε, the trace on the r.h.s. amounts to the sum of the squared

elements of Σ̂ε; the elements have uniformly bounded variance (cf. the proof of Lemma 1), so the squares
have uniformly bounded expectation and thus 1

T tr
(
Σ̂2
ε

)
= Op

(
N2T−1

)
. It then follows analogously that

(ε′tεt/T )2 = Op
(
N2/T 2

)
and thus b̄2T = Op

(
NT−1

)
. Since b2T = min(b̄2T , d

2
T ), we need a lower bound for

d2
T . The trace involved in the expression of d2

T amounts to the sum of squared elements of Σ̂ε−mT I. Due
to the

√
T -consistency of the elements of Σ̂ε, we have

d2
T = tr

((
Ω −mT I

) (
Ω −mT I

)′)
/N +Op

(
NT−0.5

)
.

The Op term on the right-hand side indicates an upper bound, though, so we derive the desired lower
bound for d2

T from the behavior of Ω−mT I. In fact is is sufficient to examine Ω, given that mT = Op(1).

Under Assumption 3 (a), tr
(
Ω

2
)

is of exact magnitude order N2, so tr
((
Ω −mT I

) (
Ω −mT I

)′)
/N is

bounded away from 0 (it is in fact of order at least N) and b2T = Op(N/T ). Using again the fact that d2
T

is of order at least N, we obtain that
b2T
d2
T

= Op

(
1
T

)
,

which is sufficient for the result.
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