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Abstract

The argument that policy risk, i.e. uncertainty about monetary and fiscal policy, has
been holding back the economic recovery in the U.S. during the Great Recession has a
large popular appeal. We analyze the role of policy risk in explaining business cycle
fluctuations by using an estimated New Keynesian model featuring policy risk as well
as uncertainty about technology. We directly measure uncertainty from aggregate time
series using Sequential Monte Carlo Methods. While we find considerable evidence
of policy risk in the data, we show that the “pure uncertainty”-effect of policy risk is
unlikely to play a major role in business cycle fluctuations. In the estimated model,
output effects are relatively small due to i) dampening general equilibrium effects that
imply a low amplification and ii) counteracting partial effects of uncertainty. Finally,
we show that policy risk has effects that are an order of magnitude larger than the ones
of uncertainty about aggregate TFP.
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1 Introduction

The supposedly negative influence of “policy risk”, i.e. uncertainty about fiscal and monetary
policy, has become a recurring theme in the political discourse. The popular argument
espoused in speeches and newspaper articles by politicians and economists alike is that the
uncertainty surrounding future policy stuns economic activity by inducing a “wait-and-see
approach”.1 In the following, we think of uncertainty as the dispersion of the economic shock
distribution. Rational consumers and firms will react to the fact that future shocks will be
drawn from a wider distribution. This reaction is distinct from the ex-post effect of higher
uncertainty resulting from on average more extreme shock realizations.2 The goal of the
present study is to isolate the first effect and answer the question: Are uncertainty shocks to
policy variables quantitatively important?

Clearly, during the so-called Great Recession U.S. citizens were facing a period of extraor-
dinary uncertainty regarding economic policy. On the one hand, both the output decline due
to the financial crisis and the fiscal stimuli designed to counteract this decline had led to a
considerable deterioration of the U.S. fiscal situation. Given this unsustainable fiscal path,
many commentators and politicians were arguing for a quick consolidation of government
finances, possibly by raising taxes. On the other hand, the U.S. unemployment rate stood at
9.6% at the end of 2010, its highest value since 1983. Hence, there were considerable calls
for more fiscal stimulus, preferably in the form of reduced taxes due to supposedly higher
multipliers (see e.g. Romer and Romer, 2010). At the same time, Republicans and Democrats
were fighting over the continuation of the Bush tax cuts. On the monetary side, the amount
of policy risk was equally high. Hawks and doves at the Federal Reserve System fought over
the extent of quantitative easing and the correct monetary stance given conflicting signals
from core and headline inflation measures.

Scientific evidence on the aggregate effects of uncertainty is still inconclusive and mostly
confined to TFP uncertainty. Empirical studies using different proxies and identification
schemes to uncover the effects of uncertainty have produced a variety of results. One group
of studies reports an important impact of uncertainty about productivity on real aggregate
variables like GDP and employment (Alexopoulos and Cohen, 2009; Bloom, 2009; Bloom

1See e.g. The Wall Street Journal, October 29th, 2009: “For these small businesses, and many others
[. . . ], there’s an additional dark cloud: uncertainty created by Washington’s bid to reorganize a wide swath
of the U.S. economy.” (Fields, 2009). For other proponents of this view, see Boehner (2010); Cantor (2010);
Imrohoroglu (2010); Lowrie (2010); McKinnon (2010); see Klein (2010); Reeve (2010); Wingfield (2010) for
dissenting opinions.

2Uncertainty shocks are mean preserving spreads to the shock distribution. They are not associated with
the expectation of shocks going into a specific direction, like expecting an expansionary stimulus package.
Hence, they are also distinct from news shocks (Beaudry and Portier, 2006; Schmitt-Grohé and Uribe, 2008),
which are future level shocks of which both the sign and the magnitude are already perfectly known today.
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et al., 2010). A one-standard deviation shock to uncertainty in these studies typically leads to
a 1%-2% drop in GDP, followed by a recovery with a considerable overshooting. In contrast,
a second group of studies reports little to no impact at all (Bachmann and Bayer, 2011;
Bachmann et al., 2010; Bekaert et al., 2010; Chugh, 2011; Popescu and Smets, 2010). In
the theoretical literature, while most studies have emphasized the contractionary effects of
uncertainty on economic activity, it is generally acknowledged that there are different effects
working in opposite directions, thereby making the overall effect ambiguous. For example,
while an increase in uncertainty may depress investment due to a “wait-and-see approach”,
economic agents may want to self-insure by working more to build up a buffer capital stock,
which ceteris paribus leads to an increase in investment.

We answer the question of whether policy risk shocks are quantitatively important in an
estimated DSGE-model. We focus on aggregate uncertainty as it has been shown to have
potentially important output effects (Fernández-Villaverde et al., forthcoming). We add to the
previous literature in the following ways. First, we are to our knowledge the first to study the
effect of policy risk on business cycles.3 Second, we directly measure aggregate uncertainty
from the respective time series without the need to resort to proxies. Third, we jointly consider
level shocks and uncertainty shocks. Regarding uncertainty shocks, we focus on policy risk,
i.e. uncertainty about future tax liabilities, government spending, and monetary policy, to
test the hypothesis that policy risk may be an important factor in explaining the prolonged
Great Recession. We also include uncertainty with respect to total factor productivity (TFP)
and investment-specific technology in order to have a benchmark against which we can
judge our findings. Fourth, we integrate these processes into a medium-scale New Keynesian
DSGE-model of the type typically used for policy analysis (see e.g. Christiano et al., 2005;
Smets and Wouters, 2007) and solve this model using third-order perturbation methods. We
then estimate the model using the Simulated Method of Moments. This approach allows us
to control for the effects of level shocks to TFP, investment-specific technology, government
spending, monetary policy, and taxes when estimating the importance of policy risk.

We find that the role of policy risk in explaining the prolonged slump is largely overstated.
Although the output effects of policy risk are an order of magnitude larger than the effects of
TFP uncertainty, even a large (two-standard deviation) shock to policy risk decreases output by

3We have recently become aware of independently conducted work by Fernández-Villaverde et al. (2011),
studying a similar issue in a calibrated model. The studies differ in the set of shocks considered and in
the details of the model specification. However, the results are quite similar, with even large uncertainty
shocks generating only a contained output decline. In their baseline calibration, a two-standard deviation
policy risk shock decreases output by 0.06% compared to 0.025% in our estimated baseline specification.
The advantage of our approach is that we estimate the parameters of our model. Moreover, we allow for
time-varying volatility in technology, allowing us to relate our findings to the literature on TFP uncertainty
and to “good luck” explanations of the Great Moderation.
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a mere 0.025%. The reason for this result is the existence of strong general equilibrium effects
that dampen the effects of aggregate uncertainty and imply a low shock amplification. Most
notably, monetary policy reacts fast and decisively to current economic conditions, implying
an interest rate response that dampens aggregate fluctuations arising from uncertainty shocks.
If we allow for a stronger amplification, uncertainty shocks generate considerably larger output
effects, but at the same time imply counterfactually volatile business cycles.

From a methodological viewpoint, the paper most closely related to our work is Fernández-
Villaverde et al. (forthcoming). Their study also employs Sequential Monte Carlo Methods
combined with third-order perturbation to estimate the effect of interest risk on the Ar-
gentinean economy. In terms of results, our paper is most closely related to Bachmann
and Bayer (2011), who show for the case of idiosyncratic uncertainty about technology that
general equilibrium effects may considerably reduce the effect of uncertainty shocks typically
found in partial equilibrium models (e.g. Bloom, 2009). Our paper is also related to the
work of Primiceri (2005) and Justiniano and Primiceri (2008). Using a time-varying Bayesian
VAR and an estimated DSGE-model, respectively, the authors document the importance of
time-varying volatility for explaining the time series behavior of output and inflation and
the Great Moderation in particular. We differ from their work in two major points: first, we
allow for a non-linear transmission of volatility shocks into the economy. Second, by using a
third-order approximation instead of a first-order approximation, we are able to distinguish
uncertainty-effects from the ex-post effect of uncertainty in the form of more extreme level
shocks. We show that their result is mainly due to the differing size of the realized level shocks
when the dispersion of the distribution from which they are drawn changes. In contrast, the
pure uncertainty-effect is only of secondary importance.

The outline of the paper is as follows. Section 2 presents a short literature review on
the transmission channels of uncertainty. In Section 3, we build a quantitative business
cycle model featuring several channels identified in the theoretical literature through which
aggregate uncertainty may impact economic activity. We measure policy risk and technological
uncertainty directly from aggregate time series using Sequential Monte Carlo methods in
Section 4. In Section 5, we feed the uncertainty processes estimated in Section 4 as driving
processes into the model and fit it to U.S. data using a Simulated Method of Moments
approach. With the estimated model at hand, we then study the effects of policy risk in
Section 6. Section 7 concludes.
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2 Uncertainty: Potential Transmission Channels

Three different mechanisms through which aggregate uncertainty may affect economic activity
have been identified in the microeconomic literature: Hartman-Abel effects, real option effects,
and precautionary savings. While these categories are helpful in shaping our thinking about
the effects of uncertainty, they are partial equilibrium effects. In general equilibrium, each of
these effects necessarily induces equilibrating price and quantity changes that may significantly
dampen the aggregate effects. While in a partial equilibrium model uncertainty may have
ceteris paribus largely contractionary effects on investment and output (e.g. Bloom, 2009), in
general equilibrium wages and interest rates may adjust, thereby significantly reducing the
resulting net effect (Bachmann and Bayer, 2011).

The first category are the so called Hartman-Abel-effects (Abel, 1983; Hartman, 1972).
Under certain conditions,4 it follows from the firms’s FOC that the expected marginal revenue
product of capital is convex in output prices and TFP.5 Hence, due to Jensen’s Inequality
larger uncertainty about these variables increases the demand for capital and thus investment.
In our model, while capital is predetermined, both the utilization of capital and labor input
can be adjusted, opening up the possibility of expansionary Hartman-Abel effects.

Second, there may be real option effects at work (Bernanke, 1983), e.g. through investment
being (partially) irreversible and/or partially expandable. For example, if the resale (purchase)
price of capital in the future differs from the current acquisition price, a firm installing capital
that it may sell later, effectively acquires a put option. Moreover, investment today destroys
a call option, namely the opportunity to buy capital later at a possibly lower price. Hence, in
the investment decision these option values have to be taken into account (Abel et al., 1996).
Higher uncertainty decreases investment as the call option to purchase the capital later, which
is “killed” by investing today, becomes more valuable. However, in the presence of partial
reversibility, the value of the put option that is obtained by investing today increases with
higher uncertainty. Hence, the total effect of uncertainty on investment in such a framework
is generally ambiguous.

In our model, several features give rise to option effects. First, capital is predetermined for
one period. Second, the relative price of investment and consumption is stochastic, thereby
giving rise to potentially costly irreversibility and expandability. Third, through the presence

4Constant-returns-to-scale production function with i) a predetermined capital stock, ii) perfect competition,
iii) risk neutrality, and iv) symmetric convex adjustment costs.

5The reason is that labor can flexibly react to shocks and hence the marginal revenue product reacts
stronger than one for one to the movement in the respective variable. To see this, assume a fixed capital stock
of capital and that the output price rises. There is a direct positive effect of this price increase on profits via
quantity times price change. Additionally, there is a positive indirect effect through the increase in optimal
output that is achieved by increasing labor.
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Table 1: Overview: potential transmission mechanism

Hartman-Abel effects Real option effects Precautionary savings
Call Put Interest rate

Investment + − + +/− +
Consumption ? ? ? ? −

Notes: + indicates a positive effect of uncertainty, − a negative effect, and +/− an ambiguous effect on the
respective variable. ? denotes that the respective effect makes no prediction for this variable due to its partial
equilibrium nature.

of depreciation allowances investment generates a tax shield at historical costs of investment
so that investment effectively “kills” the option to purchase this tax shield later. Fourth, the
interest rate in our model is stochastic, giving rise to additional countervailing option effects
as discussed in Ingersoll and Ross (1992).

The third effect is the precautionary saving motive (Leland, 1968), defined as the “additional
saving that results from the knowledge that the future is uncertain” (Carroll and Kimball,
2008). Faced with higher uncertainty, agents may both consume less and work more in order
to self-insure against future shocks, i.e. they build a buffer stock.6 As the preferences of the
agents in our model feature prudence (Garcia et al., 2007; Kimball, 1990) uncertainty should
increase precautionary savings in our model.

In the end, due to these three effects acting on different variables and potentially working
in opposite directions as well as the presence of general equilibrium effects, only a rigorous
quantitative evaluation can answer the question what the net effect of uncertainty on aggregate
activity is. We pursue this question by estimating a structural model featuring time-varying
volatility, which we present in the next section.

3 A DSGE-model with Policy Risk

We use a standard quantitative New Keynesian business cycle model (Smets and Wouters,
2007). The model economy is populated by a large representative family, a continuum of unions
j ∈ [0, 1] selling differentiated labor services to intermediate firms, a continuum of intermediate
firms producing differentiated intermediate goods using bundled labor services and capital,
and a final good firm bundling intermediate goods to a final good. In addition, the model
features a government sector that finances government spending with distortionary taxation

6Real option effects and the precautionary saving motive are not disjunct effects. Consumption is completely
irreversible as the consumed good is not available for consumption in later periods when the marginal utility
of consumption may be high.
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and transfers, and a monetary authority which sets the nominal interest rate according to an
interest rate rule.

3.1 Household Sector

The economy is populated by a large representative family with a continuum of members,
each consuming the same amount and working the same number of hours. Preferences
are defined over per capita consumption Ct and per capita labor effort Lt. Following the
framework in Schmitt-Grohé and Uribe (2006), labor is supplied to a continuum of unions
j ∈ [0, 1], which are monopolistically competitive and supply differentiated labor services lt (j).
Household members supply their labor uniformly to all unions. Hence, total labor supply of
the representative family is given by the integral over all labor markets j, i.e. Lt =

∫ 1
0 lt (j) dj.

The labor market structure will be discussed in more detail below. We assume the preference
specification of Jaimovich and Rebelo (2009), but allow for habits in consumption:

U = E0

∞∑
t=0

βt


(
Ct − φcCt−1 − γ L

1+σl
t

1+σl
St

)1−σc
− 1

1− σc

 , (1)

where φc ∈ [0, 1] measures the degree of internal habit persistence, σc ≥ 0 governs the
intertemporal elasticity of substitution, σl ≥ 0 is related to the Frisch elasticity of labor
supply, and γ ≥ 0 measures the relative disutility of labor effort. The term

St = (Ct − φcCt−1)σGS1−σG
t−1 (2)

makes the preferences non-separable in both consumption and work effort, where σG ∈ [0, 1]
parameterizes the strength of the wealth effect on the labor supply. When σG = 1, the
preference specification is equal to the one discussed in King et al. (1988), while with σG = 0
the preference specification of Greenwood et al. (1988) with no wealth effect on the labor
supply is obtained.

The household faces the budget constraint

Ct + zIt It + Bt+1

Pt
= (1− τnt )

∫ 1

0
Wt (j) lt (j) dj +

(
1− τ kt

)
rkt utKt

+
(
1− τ kt

)
(Rt−1 − 1) Bt

Pt
+ Bt

Pt
+ Φt + Tt +

(
1− τ kt

)
Ξt ,

(3)

where the household earns income from supplying differentiated labor services lt(j) at the real
wage Wt (j) to union j, and from renting out capital services utKt at the rental rate rkt . In
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addition, it receives lump sum transfers Tt from the government and profits Ξt from owning
the firms in the economy. All forms of income are taxed at their respective tax rates τnt and
τ kt . The term

(
1− τ kt

)
(Rt−1 − 1) Bt

Pt
+ Bt

Pt
is the after-tax return on savings in bonds, where

the net returns are taxed at the capital tax rate. Bonds are in zero net supply. The household
spends its income on consumption Ct and investment zIt It, where It is gross investment and
zIt denotes a shock to the relative price of investment in terms of the consumption good. This
price is equal to the technical rate of transformation between investment and consumption
goods. Due to the presence of a temporary shock, it is exogenous and stochastic. Changes in
zIt do not affect the productivity of already installed capital, but do affect newly installed
capital and become embodied in it. We assume the shock to follow an AR(2)-process7

log zIt = ρzI1 log zIt−1 + ρzI2 log zIt−2 + eσ
zI
t νzIt , (4)

where σzIt allows for time-varying volatility and is discussed in detail in Section 4. Apart
from the fact that this form of investment-specific technology may be an important source of
economic fluctuations (Greenwood et al., 1997, 2000), a stochastic relative price of investment
introduces costly reversibility and expandability of investment into the model as the future
purchase/resale price is stochastic.

The term Φt captures depreciation allowances, which are an important feature of the U.S.
tax code. We assume depreciation allowances of the form Φt = τ kt

∞∑
s=1

δτ (1− δτ )s−1zIt−sIt−s,
where δτ is the depreciation rate for tax purposes.8 By providing new investment with a tax
shield, depreciation allowances may be important in capturing the dynamics of investment
following shocks (Christiano et al., 2007; Yang, 2005). Through this tax shield at historical
investment prices, combined with a stochastic relative price of investment zI , depreciation
allowances contribute to costly reversibility and expandability of investment.

The household owns the capital stock Kt, whose law of motion is given by

Kt+1 =
[
1−

(
δ0 + δ1 (ut − 1) + δ2

2 (ut − 1)2
)]

Kt + It −
κ

2

(
It
Kt

− δ0

)2
Kt , (5)

where It is gross investment. Household members do not simply rent out capital, but capital
services utKt, where ut denotes the capital utilization, i.e. the intensity with which the
existing capital stock is used. Without loss of generality, capital utilization in steady state
is normalized to 1. Using capital with an intensity higher than normal incurs costs to the

7The lag lengths for the individual exogenous driving processes is chosen to provide a good empirical fit.
Details are provided in Section 4.

8Following Auerbach (1989), we allow the depreciation rate for tax purposes to differ from the physical
rate.

8



household in the form of a higher depreciation δ (ut) = δ0 + δ1 (ut − 1) + δ2/2 (ut − 1)2, which,
assuming δ0, δ1, δ2 > 0, is an increasing and convex function of the capital utilization. The
last term in equation (5) captures capital adjustment costs at the household level of the form
introduced by Hayashi (1982), where κ ≥ 0 is a parameter governing the curvature of the cost
function. This functional form implies that the capital adjustment costs are minimized and
equal to 0 in steady state. We choose this type of adjustment costs for three reasons. First,
while this functional form clearly is unable to explain some micro-level phenomena like lumpy
investment, it has nevertheless been shown to provide a good fit of firm level investment data
and performs better than the Christiano et al. (2005)-formulation with quadratic adjustment
costs in investment changes (Eberly et al., 2008). Second, with the flow specification of
Christiano et al. (2005), Tobin’s marginal q would be independent of the capital stock, which
would essentially shut off intertemporal linkages and thereby the option effects (Wu, 2009).

Thus, the household maximizes its utility (1) by choosing Ct, Bt+1, ut, Kt+1, It, St, Lt,
subject to the constraints (2) - (5) and the resource constraint for aggregate labor.

3.2 Labor Market

The household supplies labor lt (j) equally to a continuum of unions j, j ∈ [0, 1]. This labor
market structure allows to introduce differentiated labor services and staggered wage setting
without letting idiosyncratic wage risk affect the household members, which would make
aggregation intractable. Monopolistically competitive unions supply differentiated labor lt (j)
to intermediate firms at wage Wt (j). Every period, each union may re-optimize its wage with
probability (1− θw) , 0 < θw < 1. If a union j cannot re-optimize, its nominal wage is indexed
to the price level according to Wt (j)Pt = Πχw

t−1Wt−1 (j)Pt−1, where χw ∈ [0, 1] measures the
degree of indexing. Hence, when the union has not been able to re-optimize for τ periods, its
real wage τ periods ahead is given by:

Wt+τ (j) =


W opt
t+τ (j), if able to re-optimize in t+ τ,

τ∏
s=1

Πχwt+s−1
Πt+s Wt(j), otherwise.

(6)

Household members supply the amount of labor services that is demanded at the current
wage. The objective of each union able to reset its wage is to choose the real wage that
maximizes the expected utility of its members, given the demand for its labor services lt (j) =
(Wjt/Wt)−ηw Lcompt , where Lcompt is the aggregate demand for composite labor services and ηw
is the substitution elasticity, the respective resource constraint Lt = Lcompt

∫ 1
0 (Wjt/Wt)−ηw dj,

and the aggregate wage level Wt =
(∫ 1

0 Wt (j)1−ηw dj
) 1

1−ηw .
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3.3 Firm Side

There is a continuum of monopolistically competitive intermediate goods firms i, i ∈ [0, 1],
which produce differentiated intermediate goods Yit using capital services Kserv

it = uitKit−1

and a composite labor bundle Lcompit according to a Cobb-Douglas production function with
capital share α

Yit = zt (Kserv
it )α (Lcompit )1−α − φ , if zt (Kserv

it )α (Lcompit )1−α − φ > 0 (7)

and Yit = 0 otherwise. The fixed cost of production φ is set to reduce economic profits to 0 in
steady state, thereby ruling out entry or exit (Christiano et al., 2005). The stationary TFP
shock zt follows an AR(2)-process

log zt = ρz1 log zt−1 + ρz2 log zt−2 + eσ
z
t νzt . (8)

The composite labor bundle is built from differentiated labor inputs Lit (j) according to a

Dixit-Stiglitz aggregator Lcompit =
(∫ 1

0 Lit(j)
ηw−1
ηw dj

) ηw
ηw−1

.
We assume staggered price setting a la Calvo (1983) and Yun (1996). Each period,

intermediate firms can re-optimize their prices with probability (1− θp) , 0 < θp < 1. In
between two periods of re-optimization, the prices are indexed to the aggregate price index
Pt according to Pit+1 =

(
Pt
Pt−1

)χp
Pit = (Πt)χp Pit, where χp ∈ [0, 1] governs the degree of

indexation. Intermediate goods producers maximize their discounted stream of profits subject
to the demand from composite goods producers, equation (10).

There is a competitive final goods firm which bundles a final good Yt from a continuum of
intermediate goods using a Dixit-Stiglitz aggregation technology with substitution elasticity
ηp

Yt =
(∫ 1

0
Y

ηp−1
ηp

it di

) ηp
ηp−1

. (9)

Expenditure minimization yields the optimal demand for intermediate good i as

Yit =
(
Pit
Pt

)−ηp
Yt ∀ i . (10)
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3.4 Government Sector

Government spending, which may be thought of as entering the utility function additively
separable, follows the process

log
(
Gt

Ḡ

)
= ρg1 log

(
Gt−1

Ḡ

)
+ ρg2 log

(
Gt−2

Ḡ

)
+ eσ

g
t νgt , (11)

where Ḡ is government spending in steady state. The government finances its expenditures
by distortionary taxation of labor at the rate τnt and capital and interest income at rate τ kt .
We assume AR(2)-processes for the tax rates as this has been found to be a good empirical
description for the U.S. (McGrattan, 1994; Mertens and Ravn, 2010)

τ kt = (1− ρτk1 − ρτk2 )τ̄ k + ρτk1 τ
k
t−1 + ρτk2 τ

k
t−2 + eσ

τk
t ντkt (12)

τnt = (1− ρτn1 − ρτn2 )τ̄n + ρτn1 τnt−1 + ρτn2 τnt−2 + eσ
τn
t ντnt , (13)

where τ̄n and τ̄ k are the unconditional means of the labor and capital tax rates, respectively.
The government also sets lump-sum transfers Tt to balance the budget. This assumed structure
yields the government budget constraint

Tt +Gt + Φt = τnt WtL
comp
t + τ kt

(
rkt utKt + Ξt

)
. (14)

Transfers plus government spending plus depreciation allowances equal tax revenues from
taxing labor, capital income, and profits.

We close the model by assuming that the central bank follows a Taylor rule that reacts to
inflation and output growth.

Rt

R̄
=
(
Rt−1

R̄

)ρR(Πt

Π̄

)φπ( Yt
Yt−1

)φy1−ρR

exp (mt) . (15)

Here, ρR is a smoothing parameter introduced to capture the empirical evidence of gradual
movements in interest rates (Clarida et al., 2000; Rudebusch, 1995), Π̄ is the target interest
rate set by the central bank, and the parameters φy and φΠ capture the responsiveness of the
nominal interest rate to deviations of inflation and output growth from their steady state
values. We assume that the central bank responds to changes in output rather than its level
as this specification conforms better with empirical evidence and avoids the need to define a
measure of trend growth that the central bank can observe (see Lubik and Schorfheide, 2007).
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Finally, mt is a shock to the nominal interest rate that follows an AR(1)-process

logmt = ρm logmt−1 + eσ
m
t νmt . (16)

The definition of equilibrium and the market aggregation are standard and omitted for brevity.

4 Policy Risk: Time Series Evidence

In this section, we present empirical evidence on the importance of time-varying volatility
in modeling macroeconomic time series. We demonstrate that the data tend to reject the
homoscedasticity of macroeconomic driving processes and show that a stochastic volatility
(SV) model is able to capture the salient features of the data. Using a particle smoother, we
are able to recover the historical series of uncertainty shocks and show that both “good luck”
and “good policy” contributed to the Great Moderation.

4.1 Estimation Methodology

We perform a two-step estimation procedure. Due to the non-linear solution of the model
required to capture uncertainty effects and the high-dimensional state space, it is compu-
tationally infeasible to jointly estimate all model parameters. Hence, we first estimate the
exogenous stochastic driving processes of the model using Sequential Monte Carlo (SMC)
methods. In the next section we feed these processes into the model presented in Section 3
and estimate the parameters of the remaining model equations with a Simulated Method of
Moments (SMM) approach.

The model includes 6 exogenous stochastic driving processes with time-varying volatility,
i.e. capital and labor tax rates, government spending, a monetary policy shock, total factor
productivity, and investment-specific technology. We estimate these processes on quarterly
U.S. time series, starting in 1960Q1 and using the longest available sample for each series.
Details about the data sources can be found in Appendix A. Because we use a stationary
model, we need to extract the deviations of the non-stationary time series from their respective
trend. Hence, we apply a one-sided HP-filter to the logarithms of government spending and
the two technology processes. Using a one-sided, i.e. “causal” filter (Stock and Watson,
1999) assures that the time ordering of the data remains undisturbed and the autoregressive
structure is preserved. We allow for AR(2)-processes in all variables, except for the monetary
policy shocks,9 as the partial autocorrelations generally indicate the presence of a second

9Although theory suggests that monetary policy shocks in the Taylor rule should be unpredictable and
thus i.i.d., we find a moderate degree of first-order autocorrelation.
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root different from zero. Figure 1 shows the time series of the exogenous driving processes
on which we estimate our laws of motion. In particular for monetary policy, the presence of
time-varying volatility is immediately evident. In Appendix C.1, we provide further evidence
for the presence of time-varying volatility.
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Figure 1: Time series of exogenous driving processes.
Notes: From left to right and top to bottom: capital taxes, labor taxes, TFP, investment-
specific technology, monetary policy shocks, and government spending. Tax rates are demeaned;
government spending and technology processes are detrended using one-sided HP-filter.

There are two major competing approaches to model time-varying standard deviations:
GARCH models and stochastic volatility (SV) models (Fernández-Villaverde and Rubio-
Ramírez, 2010). In the standard GARCH model, σ2

t is a function of the squared scaled lagged
innovation in the level equation ν2

t−1 and its own lagged value: σ2
t = ω+α(σt−1νt−1)2 + βσ2

t−1.
The GARCH model has one important drawback: there are no distinct volatility shocks. The
only innovations to the volatility equation are past level shocks, meaning that they cannot be
separated from volatility shocks. As we are especially interested in the effects of shocks to the
volatility, we cannot use a GARCH model but instead employ a stochastic volatility model.
Specifically, we model the standard deviations σit as an AR(1) stochastic volatility process
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(see e.g. Fernández-Villaverde et al., forthcoming; Shephard, 2008)

σit = (1− ρσi) σ̄i + ρσiσit−1 + ηiε
i
t , εit ∼ N (0, 1), (17)

where σ̄i is is the unconditional mean of σit, i ∈ {τk, τn, g,m, z, zI}. The shock to the
volatility εit is assumed to be independent from the level shock νit .

Due to the nonlinearity embedded in the stochastic volatility setup of the shocks, we
cannot simply employ the Kalman filter as in the case of linearity and normally distributed
shocks. For this case, Fernández-Villaverde and Rubio-Ramírez (2007) propose to use the
Sequential Importance Resampling (SIR) particle filter, a special application of the more
general class of SMC methods, to evaluate the likelihood.10

After obtaining the likelihood of the observables given the parameters, we use a Tailored
Randomized Block Metropolis-Hastings (TaRB-MH) algorithm (Chib and Ramamurthy, 2010)
to maximize the posterior likelihood. The prior distributions of the parameters, which are
relatively weak, are given in Table 2.11

We are also interested in backing out the historical values of the latent state σt, given
the whole set of observations. After filtering, it is straightforward to employ the backward-
smoothing routine (Godsill et al., 2004) to obtain a historical distribution of the volatilities.
The smoothed values were computed at the mean of the posterior distribution using 10,000
particles.

4.2 Estimation Results

The estimation results are presented in Table 2. Detailed convergence diagnostics are shown
in Appendix C.2. In general, all parameters are quite precisely estimated as evidenced by
the percentiles. All shocks, except for the monetary policy shock, exhibit a high degree of
persistence in their levels, with less persistence in their volatilities. Moreover, the estimated
processes show considerable evidence of uncertainty, with ηi ranging between 0.3 and 0.6. As
a one-standard deviation uncertainty shock increases the volatility of the respective process
by (exp(ηi)− 1) × 100 percent, such a shock increases the variance of capital taxes, labor
taxes, TFP, investment specific technology, monetary policy, and government spending by

10Technical details of the algorithms used in this subsection can be found in Appendices B.1-B.3.
11For the autoregressive parameters of the level equation ρi

1 and ρi
2, we impose a uniform prior for each

of the corresponding autoregressive roots over the stability region (−1,+1). Let ξ1 and ξ2 be the roots of
such an AR(2)-process. The autoregressive parameters corresponding to these roots can be recovered from:
ρ1 = ξ1 + ξ2 and ρ2 = −ξ1ξ2 . The posterior distribution was computed from a 20,500 draw Monte Carlo
Markov Chain using 3,000 particles, where the first 2,500 draws were discarded as burn-in draws. Acceptance
rates were generally between 20% and 45%. We also checked identifiability of the SV-process by simulating
data from the process and trying to recover the true parameters from this artificial data.

14



Table 2: Prior and Posterior Distributions of the Shock Processes

Parameter Prior distribution Posterior distribution
Distribution Mean Std. Dev. Mean 5 Percent 95 Percent

Capital Tax Rates
ρ1 Uniform* 0.00 0.577 0.856 0.819 0.893
ρ2 Uniform* 0.00 0.577 0.103 0.070 0.137
ρσ Beta* 0.90 0.100 0.795 0.745 0.860
ησ Gamma 0.50 0.100 0.379 0.333 0.426
σ̄ Uniform -7.00 5.333 -5.071 -5.361 -4.786

Labor Tax Rates
ρ1 Uniform* 0.00 0.577 1.051 1.018 1.084
ρ2 Uniform* 0.00 0.577 -0.052 -0.085 -0.019
ρσ Beta* 0.90 0.100 0.581 0.514 0.670
ησ Gamma 0.50 0.100 0.651 0.587 0.718
σ̄ Uniform -7.00 5.333 -5.901 -6.253 -5.531

Total Factor Productivity
ρ1 Uniform* 0.00 0.577 1.021 0.965 1.080
ρ2 Uniform* 0.00 0.577 -0.175 -0.230 -0.125
ρσ Beta* 0.90 0.100 0.679 0.611 0.781
ησ Gamma 0.50 0.100 0.320 0.272 0.369
σ̄ Uniform -7.00 5.333 -5.349 -5.555 -5.138

Investment-Specific Technology
ρ1 Uniform* 0.00 0.577 1.420 1.369 1.468
ρ2 Uniform* 0.00 0.577 -0.501 -0.536 -0.461
ρσ Beta* 0.90 0.100 0.807 0.765 0.861
ησ Gamma 0.50 0.100 0.332 0.295 0.368
σ̄ Uniform -7.00 5.333 -6.206 -6.427 -5.983

Government Spending
ρ1 Uniform* 0.00 0.577 0.919 0.866 0.972
ρ2 Uniform* 0.00 0.577 -0.028 -0.079 0.018
ρσ Beta* 0.90 0.100 0.719 0.623 0.865
ησ Gamma 0.50 0.100 0.295 0.227 0.368
σ̄ Uniform -7.00 5.333 -4.887 -5.193 -4.585

Monetary Policy Shock
ρ1 Uniform* 0.00 0.577 0.427 0.385 0.469
ρσ Uniform* 0.90 0.100 0.921 0.895 0.947
ησ Beta* 0.50 0.100 0.364 0.330 0.400
σ̄ Gamma -7.00 5.333 -5.188 -5.512 -4.849

Notes: Beta* indicates that the parameter divided by 0.999 follows a beta distribution. Uniform* indicates
that the roots of the autoregressive process are estimated instead of the autoregressive coefficients and follow
the specified prior distribution.
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46%, 92%, 38%, 39%, 34%, and 45%, respectively.12 Appendix C.3 shows the results of model
misspecification tests applied to the SV model. In general, the model fits the data well and
cannot be rejected.

The relevance of stochastic volatility in modeling the behavior of the exogenous driving
processes can be seen in the smoothed estimates of the historical variances of the shocks
in Figure 2. The end of the 1960s and particularly the 1970s were plagued by high shock
volatilities, both in the technology and the policy shocks. Particularly during the 1970s, the
volatilities increased and reached their sample maxima for both tax rates and technology
shocks. In contrast, the decade from 1985 to 2000 was characterized by shock volatilities to
the technology variables well below their unconditional mean, indicating the role of “good
luck” in explaining the Great Moderation. However, from about 1990 on “good policy”
also contributed to this phenomenon as is evidenced by the low volatilities of the tax and
government spending shocks, although the change in volatility is not as pronounced for the
latter. For monetary policy shocks, there is clear evidence of a lower shock volatility following
the Volcker disinflation from 1979-1983, a trend that also continued under Greenspan. In
contrast, the early tenure of Volcker experienced a volatility of monetary shocks considerably
larger than during the first oil price shock. With the height of the dot-com bubble the
volatility of TFP shocks somewhat increased again, while the investment-specific technology
growth remained tranquil over the whole 2000s. The largest changes in volatility in the 2000s
came under George W. Bush who considerably changed the tax law, resulting in a pronounced
increase in the volatility of tax rates. At the end of our sample, the Great Recession again
results in an increase in policy risk with a rise in the volatility of government spending, tax
rates, and monetary policy to comparable levels as after 9/11. For government spending and
taxes, this mostly reflects the provisions in the American Recovery and Reinvestment Act
that contained $288 billion in tax relief to companies and individuals, e.g. in the form of $116
billion in payroll tax relief.

Note that the SV-framework used in the present study does not imply a mechanical link
between the level shocks and the volatility shocks as a GARCH-model would do. Of course,
as a comparison of Figures 1 and 2 shows, a large level shock tends to coincide with an
increase in the conditional variance. However, the reason for this increase in the estimated
conditional variance is not a mechanical effect of this level shock subsequently entering the
volatility equation. Rather, the Bayesian estimation of the SV-model weighs the likelihood of
observing such a large shock being drawn from a narrow distribution, i.e. without observing a
simultaneous/previous volatility shock, against the likelihood of observing a shock of this size

12Thus, e.g. a one-standard deviation monetary policy risk shock increases the volatility of the monetary
policy shocks from exp(−5.19) = 0.56% to exp(−5.19 + 0.364) = 0.8%.
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that is drawn from a wider distribution due to the occurrence of a variance shock.
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Figure 2: Smoothed standard deviations. From left to right and top to bottom: capital
taxes, labor taxes, TFP, investment-specific technology, monetary policy shocks,
and government spending.
Notes: Red dotted line: unconditional mean; shaded area: two standard deviation bands.

5 Fitting the Model to the Data

Using the parameter estimates of the stochastic driving processes obtained in the previous
section, we are now in a position to estimate the deep parameters of the model presented in
Section 3.

5.1 Simulated Method of Moments Estimation

We use the Simulated Method of Moments (SMM) approach as proposed in Ruge-Murcia
(2010). Intuitively, this method minimizes the weighted distance between the empirical
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Table 3: Parameters fixed prior to estimation

Parameter Value Target/Motivation Parameter Value Target/Motivation

Π̄ 1 Zero infl. steady state σG 0.001 Jaimovich-Rebelo (2009)
β 0.99 Standard value ηp 10 11% Markup
δ0 0.025 10% annual deprec. ηw 10 11% Markup
δ1 0.0351 ū = 1 α 0.295 Sample mean
δτ 0.05 Auerbach (1989) τn 0.1984 Sample mean
φ 0.038 0 profits in SS τ k 0.388 Sample mean
γ 19.1 SS labor of 0.2 G/Y 0.2031 Sample mean
σc 2 Standard value

moments and the moments resulting from artificial data simulated from the model (details
can be found in Appendix B.5).

In order to simulate data, we first need to solve the model non-linearly. Due to the
high-dimensional state space of our model, we employ perturbation methods to obtain an
approximation of the policy function around the deterministic steady state (see e.g. Judd, 1998).
Specifically, we need to obtain a third-order approximation, because we are interested in the
pure effects of volatility shocks, i.e. when holding the level shocks constant. Loosely speaking,
a first-order approximation yields no effects of uncertainty; a second-order approximation
yields both a constant effect and an effect mediated through the corresponding level shock.
Only in the third-order approximation does time-varying uncertainty play a separate role (for
a more detailed explanation, see Appendix B.4).

Table 3 presents the values of parameters we fix prior to the estimation. We set gross
steady state inflation Π̄ to 1 and the discount factor β to 0.99. Regarding the depreciation
parameters, δ0 = 0.05 is chosen to imply a 10% annual depreciation rate, δ1 = 0.0351 sets the
steady state capital utilization to 1, and the depreciation rate for tax purposes δτ is set to
twice the rate of physical depreciation (Auerbach, 1989). The fixed-cost parameter φ = 0.038
implies that firms make zero profit in steady state and the labor disutility parameter γ = 19.1
sets the steady state share of hours worked to total time to 20%. Regarding the preference
parameters, we set the parameter governing the intertemporal elasticity of substitution σc to
2 and set σG = 0.001, the value chosen in Jaimovich and Rebelo (2009).13 Hence, preferences
are close to the GHH-specification and imply a small wealth effect on the labor supply,
which is consistent with evidence from studies focusing on the effects of news (Schmitt-Grohé
and Uribe, 2008) and government spending (Monacelli and Perotti, 2008). The elasticity of
substitution parameters for differentiated labor services and intermediate goods are set to

13When attempting to estimate this parameter, it hit the lower bound of 0 as in Schmitt-Grohé and Uribe
(2008). Hence, we fix the parameter to a small value that still assures a balanced growth path.
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10, resulting in a steady state markup of 11%. The capital share α, the steady state tax
rates τ k and τn, and the steady state share of government spending to output are set to their
respective sample means.

The empirical moments to be matched are the standard deviations and first- and second-
order autocovariances of output, consumption, investment, inflation, the real wage, and the
nominal interest rate. Moreover, we target the covariance of output with the other variables.
All variables are logged and detrended using a one-sided HP-filter with smoothing parameter
λ = 1600. The second and fourth columns of Table 5 display the respective sample moments.14

5.2 Parameter Estimates

Table 4: Parameters estimated by SMM

Parameter Description Mean -1 std.-dev. +1 std.-dev.
φc Consumption habits 0.9665 0.9660 0.9671
δ2/δ1 Capital utilization costs 0.0414 0.0314 0.0546
κ Capital adjustment costs 10.0857 0.8007 127.0438
θp Calvo parameter prices 0.9644 0.9641 0.9646
θw Calvo parameter wages 0.7785 0.7615 0.7947
χp Price indexation 0.4170 0.3809 0.4539
χw Wage indexation 0.9751 0.9725 0.9774
σl Frisch elasticity parameter 0.0683 0.0652 0.0716
ρR Interest smoothing 0.4889 0.4541 0.5238
φπ Taylor rule inflation 1.9691 1.9058 2.0422
φy Taylor rule output growth 1.2195 0.8416 1.7671

The parameter estimates are shown in Table 4. All parameters except for the capital
adjustment cost parameter κ are precisely estimated as seen in columns 4 and 5.15 Consumers
have strong habits in consumption with φc = 0.97, which is at the upper end of values generally
considered plausible. Capital utilization costs show little convexity with δ2/δ1 = 0.04, while
capital adjustment is costly as indicated by κ = 10.09, ensuring that investment is not
excessively volatile. Prices are estimated to be quite sticky with θp = 0.96, while the degree
of wage stickiness is moderate with an average duration of 4.3 quarters. The high degree
of price stickiness compared to e.g. Smets and Wouters (2007) reflects the absence of real

14Some of the target moments are transformed to correlations for better interpretation. The relative
standard deviations with respect to the standard deviation of output are only implicitly targeted through the
standard deviations of the respective series.

15The confidence bands rely on the asymptotic normality of the estimator as shown in equation (B.18).
However, this is only a rough approximation as most parameters, e.g. the Calvo parameters, have bounded
support. Unfortunately, SMM is computationally too intensive to rely on bootstrapping the standard errors.
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rigidities like a non-constant elasticity of substitution in our setup. The degree of indexation
to past inflation is considerably higher for wages than for prices, with the former being almost
perfectly indexed to past inflation. An estimated value of σl = 0.07 indicates almost linear
disutility of labor. In the Taylor rule, there is a moderate degree of interest smoothing. The
reaction coefficients of monetary policy are in line with values found in the literature.

Table 5: Simulated and Empirical Moments

Model Data Model Data Model Data Model Data Model Data
σ(xt) ρ(xt, yt) σxt/σyt ρ(xt, xt−1) ρ(xt, xt−2)

Y 1.44% 1.57% 1.00 1.00 1.00 1.00 0.93 0.90 0.84 0.75
C 0.93% 0.95% 0.71 0.85 0.65 0.60 0.99 0.90 0.95 0.74
I 5.74% 5.30% 0.91 0.85 3.98 3.37 0.88 0.93 0.74 0.80
Π 0.22% 0.27% 0.23 0.17 0.16 0.17 0.91 0.50 0.75 0.32
W 0.82% 0.90% 0.23 0.10 0.57 0.57 0.97 0.84 0.91 0.69
R 0.40% 0.39% 0.28 0.34 0.28 0.25 0.73 0.86 0.49 0.67

Notes: Time Series Xt are output (Yt), consumption (Ct), investment (It), inflation (Πt), the real wage (Wt),
and the nominal interest rate (Rt). Small letters denote variables that are logged and detrended using a
one-sided HP-filter with smoothing parameter λ = 1600.

The first and third column of Table 5 show the fit of the model. Output is 92% as volatile
in the simulated as model as in the data, while investment is 108% as volatile. The volatility
of consumption is well-matched, while its correlation with output is too low. The volatilities
of the real wage, inflation, and the nominal interest rate are on target. Their correlation
with output is also well matched. Only the real wage is somewhat too procyclical. The
autocorrelations are also in general well-matched. Only consumption exhibits a slightly too
high autocorrelation.

5.3 The Effects of Time-Varying Volatility

With the estimated model at hand, we can perform a simple counterfactual experiment to
demonstrate the importance of time-varying volatility for explaining U.S. macroeconomic
time series. However, the effects of time-varying volatility reflect both the ex-ante uncertainty
effect of knowing that the shocks are drawn from a wider distribution and the ex-post effect
of more extreme shock realizations. In the next section, we will therefore separate these two
by using the model to keep the level shocks constant.

In Figure 2, we found clear evidence of a decrease in the variance of both the technological
shocks and the policy shocks since the mid 1980s, which contributed to the lower volatility of
output and inflation during the Great Moderation. Using our estimated DSGE-model, we
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can ask what a counterfactual economy without time-varying volatility would have looked
like. For this purpose, we completely shut off time-varying volatility by setting uncertainty
shocks to zero. We then simulate the model again using the new set of driving forces where
both the uncertainty effect and the effects of the corresponding more extreme level shocks
are absent due to σit = σ̄i for all i ∈ {τk, τn, g,m, z, zI}. This unconditional sample mean of
the log-volatility of the level shocks σ̄i lies between the high volatility pre-Great Moderation
period’s value and the value in the subsequent low volatility Great Moderation phase. The
corresponding simulated moments are presented in Table 6. The co-movement of the model
variables still fits the data quite well. However, compared to the actual data, such an economy
fails to generate sufficient volatility: output, consumption, and investment are only about
65%, 73%, and 75% as volatile as the data, respectively.16 In contrast, as seen in Table 5,
the model with time-varying volatility captures the data moments well. These results clearly
indicate the importance of time-varying volatility in explaining U.S. macroeconomic time
series (see e.g. Justiniano and Primiceri, 2008; Primiceri, 2005).

Table 6: Simulated and empirical moments for the model without time-varying volatility

Model Data Model Data Model Data Model Data Model Data
σ(xt) ρ(xt, yt) σxt/σyt ρ(xt, xt−1) ρ(xt, xt−2)

Y 0.99% 1.57% 1.00 1.00 1.00 1.00 0.94 0.90 0.85 0.75
C 0.71% 0.95% 0.67 0.85 0.72 0.60 0.99 0.90 0.95 0.74
I 3.91% 5.30% 0.89 0.85 3.97 3.37 0.92 0.93 0.79 0.80
Π 0.18% 0.27% -0.19 0.17 0.18 0.17 0.91 0.50 0.76 0.32
W 0.53% 0.90% 0.56 0.10 0.54 0.57 0.97 0.84 0.91 0.69
R 0.30% 0.39% -0.11 0.34 0.30 0.25 0.78 0.86 0.61 0.67

Notes: Time Series Xt are output (Yt), consumption (Ct), investment (It), inflation (Πt), the real wage (Wt),
and the nominal interest rate (Rt). Small letters denote variables that are logged and detrended using a
one-sided HP-filter with smoothing parameter λ = 1600.

6 The Aggregate Effects of Policy Risk

We now turn to analyzing the effects of aggregate uncertainty on business cycle fluctuations.
First, having estimated the deep parameters of the model, we conduct policy experiments
to trace out the effects of uncertainty shocks. We then study their transmission into the
economy and analyze the underlying amplification mechanisms. We find that the model is in

16If we had used a linearized version of the model, this effect would not have been observed, as periods of
high volatility would offset periods of low volatility. However, due to the non-linearity of our model, this is
not the case here.
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principle able to generate large effects of uncertainty, but that the estimated parameterization
implies that the aggregate effects of uncertainty are quantitatively small. The reason for the
small aggregate response to uncertainty shocks is the presence of general equilibrium effects
that imply only a weak amplification.

6.1 Impulse Response Analysis

We first analyze the pure uncertainty effect resulting from time-varying volatility by separating
it from the ex-post effect of more extreme shock realizations. We do so by computing impulse
response functions to uncertainty shocks while keeping constant the realizations of the level
shocks.
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Figure 3: Impulse responses to a two-standard deviation uncertainty shock to capital taxes,
labor taxes, and government spending (from left to right column).
Notes: Level shocks are held constant. All responses are in percent, except for π which is in
percentage points.

Figures 3 and 4 show the impulse response functions to two-standard deviation policy
risk and technology risk shocks with each column representing the impulse responses to a
different shock. The ex-post level effect has been shut off, which is reflected in the flat impulse

22



5 10 15 20 25 30
−6
−4
−2

0

x 10
−3 Y

5 10 15 20 25 30
−3

−1.5
0

x 10
−3 C

5 10 15 20 25 30
−0.03
−0.02
−0.01

0

Inv

5 10 15 20 25 30

−5
0
5

10
x 10

−5 π

5 10 15 20 25 30
0

50

σm

5 10 15 20 25 30

−4
−2

0
x 10

−4 Y

5 10 15 20 25 30

−10
−5

0

x 10
−5 C

5 10 15 20 25 30

−2

−1

0
x 10

−3 Inv

5 10 15 20 25 30

5
10
15

x 10
−5 π

5 10 15 20 25 30

20
40
60

σz

5 10 15 20 25 30
0
1
2

x 10
−3 Y

5 10 15 20 25 30
−2

2
6

x 10
−4 C

5 10 15 20 25 30
0
5

10

x 10
−3 Inv

5 10 15 20 25 30

−2
0
2
4

x 10
−5 π

5 10 15 20 25 30
0

50

σz
I

Figure 4: Impulse responses to a two-standard deviation uncertainty shock to monetary
policy, TFP, and investment-specific technology (from left to right column).
Notes: Level shocks are held constant. All responses are in percent, except for π which is in
percentage points.

response for τ k, τn, g, m, z, and zI depicted in the bottom row.17 The left column of Figure
3 shows that a capital tax risk shock acts like a positive demand shock. Output and inflation
both increase on impact and slowly return to zero. Initially the output response is mostly
driven by the positive response of investment, which has a peak response on impact of 0.014%.
Consumption increases less strongly and follows a hump-shape, peaking after 12 quarters.
Due to the estimated strong degree of habit persistence in consumption, the consumption
response decays only slowly and drives the output response after about four years, when
investment is already almost back to its initial level. The middle and right columns show the
impulse responses to labor tax risk and government spending risk, respectively. Both emulate
the characteristics of a negative supply shock, with output, consumption, and investment
exhibiting a hump-shaped decline, while inflation rises.

Labor tax risk induces the strongest output response of all uncertainty shocks considered,
with output showing a peak decline of 0.02% and investment dropping by four times as much.
The reason for this relatively strong response, compared to e.g. the government spending
risk shock, is that a two-standard deviation labor tax risk shock increases uncertainty about

17In the subsequent graphs, we generally omit the flat level impulse responses.
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labor taxes by about 120%, compared to around 60% for the other uncertainty shocks. Due
to the relatively low persistence of the underlying shock process for labor tax risk, the effect
on inflation subsides after 10 quarters, while the effect on consumption is again considerable
more drawn out.

The left column of Figure 4 displays the response to a two-standard deviation monetary
policy risk shock. This shock has a contractionary effect on output, mostly driven by a decline
in investment that peaks at -0.03% after 7 quarters. In contrast, consumption reacts sluggishly,
peaking only after 30 quarters. Inflation initially drops, overshoots after 10 quarters and then
slowly returns, driven by a large persistence in the underlying risk shock process.
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Figure 5: Impulse responses to a joint two-standard deviation policy risk shock (solid blue
line) and to a joint technology risk shock (dashed red line).
Notes: Level shocks are held constant. All responses are in percent, except for π and realinterest
which are in percentage points.

The historical volatility estimates shown in Figure 2 indicated that uncertainty about the
future path of economic policy increased for all policy instruments during the Great Recession.
We simulate such a situation in the form of a simultaneous two-standard deviation increase in
policy risk.18 Results are shown in Figure 5. A simultaneous two-standard deviation policy
risk shock (solid lines) acts like a negative supply shock. It leads to an immediate decrease in
output of 0.025%, before output slowly returns to its initial level as the shock subsides. This

18Due to the nonlinearity inherent in our model and the solution method that preserves this nonlinearity
up to third order, the resulting impulse responses are not necessarily identical to the sum of the impulse
responses to the individual uncertainty shocks.
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decrease in output is driven by both consumption and investment, with investment dropping
initially by 0.1%. While the capital stock reacts sluggishly due to the presence of relatively
high capital adjustment costs, capital services decline immediately due to an accompanying
decline in capital utilization. At the same time inflation rises. As a consequence, the real
wage rises for a few periods, reflecting the indexation to the rising inflation, and then starts
to decrease, reaching its minimum after 15 quarters. Due to monopolistic competition in
the labor market and the non-separability of the utility function, the initial increase in the
real wage does not induce an increase in labor supplied by the household. Rather, household
members decrease their labor supply and consume more leisure. The real interest rate,
computed as the difference between the policy rate and inflation, declines initially and then
follows a hump-shaped pattern, reaching its peak after 7 quarters. The initial decline in the
real interest rate reflects both the interest smoothing present in the estimated Taylor rule as
well as the response of the central bank to the initial decline in output. Only when output
starts to recover does the real interest rate rise to bring down inflation. The similarity in both
the size and the shape of the impulse response functions of a policy risk shock and the labor
tax risk shock indicates that the latter dominates the effects of the other policy risk shocks.19

It is instructive to compare the policy risk results to the benchmark of uncertainty about
technology. The middle and right columns of Figure 4 show the impulse responses to a two-
standard deviation risk shock to total factor productivity and investment-specific technology,
respectively. The response to TFP risk is qualitatively similar to what could have been
expected from the previous literature: it triggers an investment driven decline in output
while inflation increases. In contrast, investment-specific technology risk triggers exactly
the opposite effect: output increases initially and peaks after 4 quarters, with the response
again being mainly driven by the investment response. It is noteworthy that the response to
TFP uncertainty is an order of magnitude smaller than the effects of uncertainty about the
investment-specific technology shocks. This result suggests that the role of investment-specific
technology risk might be underappreciated in the uncertainty literature.20 Figure 5 also shows
the impulse responses to a joint technology risk shock of the type occurring in the middle
of the 1970s. The comparison of technology risk (dashed lines) with policy risk (solid lines)

19While strictly speaking the impulse responses to single shocks are not additive, the opposite signs of
the output response for some sources of uncertainty have important consequences for periods of generally
heightened uncertainty. The simultaneous increase in uncertainty from different sources does not necessarily
translate into a large output response. In times like the Great Recession, where policy risk jointly increased,
different sources of uncertainty may partially offset each other, resulting in a low overall effect. For example,
Figure 3 documents that capital taxation risk acts expansionary and could more than offset the negative effect
of government spending risk on output and investment.

20While the effects of level shocks to investment-specific technology have received considerable attention in
recent years (Fisher, 2006; Justiniano et al., 2010; Schmitt-Grohé and Uribe, 2011), we are to our knowledge
the first to study the effects of uncertainty about investment-specific technology.
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shows that policy risk generates responses that are one order of magnitude larger.
Summarizing, our results show that the finding of relatively minor effects of uncertainty

on aggregate activity for the case of TFP (Bachmann and Bayer, 2011; Bachmann et al., 2010;
Bekaert et al., 2010; Chugh, 2011; Popescu and Smets, 2010) also holds true for policy risk
and investment-specific technology risk.

6.2 What Drives the Response to Policy Risk?

Of the transmission channels discussed in Section 2, the precautionary savings motive does
not play a dominant role. In all sets of impulse responses, consumption and investment
move in the same direction, while in the case of a dominant precautionary savings motive we
would expect agents to decrease their consumption in order to self-insure against aggregate
uncertainty by investing in a buffer-stock. Of course, it is conceivable that the precautionary
savings motive counteracts the observed effects, which then would have been larger in its
absence.

While it is virtually impossible to disentangle the different real option, Hartman-Abel,
and general equilibrium effects, we can gain some insight into the transmission of uncertainty
by shutting off various features of the model. First, as can be seen by fixing the relative
price of investment to consumption at 1, the real option effect embedded in the depreciation
allowances via the stochastic resale price of capital hardly plays a role. However, while their
role in providing current investment with a tax shield at historical investment prices does not
seem to create strong real option effects in our model, this does not mean that depreciation
allowances do not play an important role. With their effect on Tobin’s marginal q and
the capital utilization decision, they have an important amplifying effect on the investment
response and hence on output. When shutting them off completely, i.e. setting δτ = 0, capital
drops less and the negative consumption response is cut in half (figures omitted for brevity).

Second, the low wealth effect on the labor supply implied by the preferences being close to
the GHH-form (σG ≈ 0) has a considerable effect on the responses to uncertainty, amplifying
the response to some shocks and dampening the one to others. As shown in Figure 6, when
setting the preferences to the standard King-Plosser-Rebelo specification (σG = 1), the
negative response to labor tax risk declines by two orders of magnitude. At the same time,
the effect of uncertainty shocks that mainly affect the capital margin, i.e. capital tax and TFP
risk, substantially increases, with the former now being the dominant policy risk factor. The
output response to government spending, monetary policy and investment-specific technology
risk stays largely unaltered (figures omitted for brevity).21

21This finding of an important role of the preference specification for the transmission of uncertainty shocks
suggests that adopting a certain form of utility function may already predetermine the sign of the output
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Figure 6: Impulse responses to a two-standard deviation uncertainty shock to capital taxes,
labor taxes, and TFP (from left to right column).
Notes: solid blue line: KPR-preferences (σG = 1); red dashed line: preferences close to GHH
(σG ≈ 0). Level shocks are held constant. All responses are in percent, except for π which is in
percentage points.

As noted in Section 2, the theoretical literature predicts an ambiguous effect of uncertainty
as real option, Hartman-Abel, and general equilibrium effects drive the dynamics and may
work in opposite directions. That this is actually the case for the specific types of uncertainty
considered can be seen from, e.g., the impulse response of consumption to a capital tax shock
depicted in the middle left panel of Figure 6. The consumption response is mostly negative
for the case of σG ≈ 0 but unambiguously positive for σG = 1. This suggests that different
partial effects are dominating the respective responses for the different parameterizations.
While a contractionary effect dominates in the GHH-case, an expansive effect prevails in the
KPR-case. The strong dependence of uncertainty effects on the specific parameterization
underscores the need for model estimation as opposed to calibration in order to trace out the
aggregate effects of uncertainty.

response to an uncertainty shock. Hence, future studies dealing with the effects of uncertainty should devote
more attention to tracing out which preference specification may be the most suitable one. Our estimation
results hint at a utility function featuring a low wealth effect on the labor supply. This is in line with an
increasing number of studies from the fiscal policy (Monacelli and Perotti, 2008), open economy (Chang and
Fernández, 2010; Garcia-Cicco et al., 2010), and news literature (Jaimovich and Rebelo, 2009; Schmitt-Grohé
and Uribe, 2008), which also suggest the presence of a low wealth effect on the labor supply.
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Table 7: Counterfactual calibration implying large uncertainty effects

Parameter Description Estimated mean Counterfactual
φc Consumption habits 0.96 0.9
κ Capital adjustment costs 10.1 5
θp Calvo parameter prices 0.96 0.9
σl Frisch elasticity parameter 0.07 4
ρR Interest smoothing 0.49 0.9
φy Taylor rule output growth 1.22 0

6.3 Why are the Effects of Uncertainty small?

We identify strong general equilibrium effects – constraining the amplification of uncertainty
shocks – as the main reason for the small effect of uncertainty on economic activity. While the
model is in principle capable of generating large real effects of uncertainty, strong stabilizing
effects are required to match the data moments. Therefore, SMM estimates the model
parameters to imply strong equilibrating effects.

Consider the simple counterfactual experiment displayed in Table 7. Here, we decrease
habit persistence, capital adjustment costs, price rigidities, and the Frisch elasticity of labor
supply. To dampen the general equilibrium response of the nominal interest rate, we shut off
the reaction to output growth and considerably increase the interest smoothing. In this case,
as shown Figure 7, policy risk leads to a drop in output of 1.5%, which is mostly driven by a
large decline in investment. While this calibration allows for larger effects of uncertainty, it
comes at a cost: the model with this calibration implies unrealistically large business cycles.
As shown in Table 8, output would be almost three times as volatile as found in the data,
investment five times, and wages almost four times as volatile.

Hence, given the estimated exogenous driving processes, SMM estimates the parameters to
imply a shock amplification more in line with the actually observed data. First, consumption
habits, capital adjustment costs, and price rigidities are estimated to be quite high, generating a
high persistence and thereby limiting the reaction of consumption, investment, and inflation to
shocks and thus the deviations from the ergodic mean that are realized over time. Second, the
parameter governing the Frisch elasticity of labor supply is estimated to be low so household’s
labor supply reacts quite flexibly to shocks. Third and most importantly, monetary policy
reacts fast and decisively to current economic conditions and in particular to output. The
resulting transmission of both uncertainty and level shocks into the economy then implies less
pronounced business cycles.

The decisive reaction to output growth is evident from the large coefficient estimate in
the Taylor rule. The monetary authority’s aggressive reaction to changes in output has a
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Figure 7: Impulse responses to a two-standard deviation policy risk shock under counterfac-
tually volatile calibration.
Notes: Level shocks are held constant. All responses are in percent, except for π and realinterest
which are in percentage points.

considerable dampening effect on the business cycle as it prevents output from deviating
too far from steady state. When keeping all parameters at their baseline values but setting
φy = 0, thus shutting off the response of interest rates to output growth, triples the negative
output response following a policy risk shock (figures omitted for brevity). The main reason
for this behavior is the response of the real interest rate. The uncertainty shock acts like a
negative supply shock, agents reduce their labor and capital input, and inflation rises. The
monetary authority responds to this increase in inflation by raising the nominal interest rate
without considering the negative impact on output. As a result, the real interest rate now has
a positive impact response, amplifying the original shock’s contractionary effect on output.
In contrast, if the monetary authority also reacts to changes in output, the interest rate hike
is more muted and the negative output response lower. The real interest initially declines to
counteract the contractionary effect on output and only rises after several quarters.

The fast reaction of nominal interest rates to exogenous shocks can be seen from the
relatively low degree of interest smoothing, meaning that current economic conditions affect
nominal interests more than past interest rates. This low amount of interest smoothing exerts
a considerable influence on the economy’s response to uncertainty shocks, allowing a stronger
counteracting reaction of the nominal interest rate, which dampens the uncertainty effects in
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Table 8: Simulated and Empirical Moments: Counterfactual with stronger amplification

Model Data Model Data Model Data Model Data Model Data
σ(xt) ρ(xt, yt) σxt/σyt ρ(xt, xt−1) ρ(xt, xt−2)

Y 4.47% 1.57% 1.00 1.00 1.00 1.00 0.66 0.90 0.38 0.75
C 0.65% 0.95% 0.45 0.85 0.15 0.60 0.95 0.90 0.85 0.74
I 24.90% 5.30% 0.99 0.85 5.58 3.37 0.63 0.93 0.34 0.80
Π 0.29% 0.27% 0.76 0.17 0.07 0.17 0.80 0.50 0.53 0.32
W 3.55% 0.90% 0.85 0.10 0.79 0.57 0.83 0.84 0.57 0.69
R 0.31% 0.39% -0.90 0.34 0.07 0.25 0.82 0.86 0.57 0.67

Notes: Time Series Xt are output (Yt), consumption (Ct), investment (It), inflation (Πt), the real wage (Wt),
and the nominal interest rate (Rt). Small letters denote variables that are logged and detrended using a
one-sided HP-filter with smoothing parameter λ = 1600.

a similar way as the output feedback of monetary policy. When giving more weight to past
interest rates compared to the currently desired nominal interest, the nominal interest rate
responds more sluggishly to shocks to the system, thereby temporarily allowing for larger
deviations from steady state.

Hence, our result lend support to the findings of Bachmann and Bayer (2011). Their study
showed for the case of idiosyncratic uncertainty about technology that general equilibrium
effects, most importantly the endogenous feedback to wages and interest rates may considerably
dampen the output effects of uncertainty shocks. Our results indicate that this also holds
true for the case of aggregate uncertainty in an estimated DSGE-model.

These results suggest a potential issue for studies using a “proof-of-concept”-approach.
Such studies typically show that uncertainty may matter by putting one source of uncertainty
along one level shock into a model and then designing a transmission mechanism that enables
this source to explain the whole business cycle. Our findings indicate that more attention needs
to be devoted to what happens if other shocks, both uncertainty and level are present. As soon
as other competing sources of aggregate fluctuations documented in the literature are added
to these models, the effects of uncertainty are bound to decrease. Moreover, the approach of
considering only one source of uncertainty and designing a particular amplification mechanism
to generate an output drop in response may neglect that specially designed amplification
mechanisms may interact with other types of shocks in undesired ways.22

22For example, expansionary output effects of uncertainty, which in our model e.g. arise with capital tax
risk, might be amplified in the same way.
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7 Conclusion

The current paper analyzes the effects of policy risk, i.e. aggregate uncertainty about labor
and capital tax rates, monetary policy, and government spending on aggregate activity. We
find that aggregate policy risk has only minor effects on the business cycle. Although its
effects are an order of magnitude larger than the ones of technological uncertainty, a two
standard-deviation policy risk shock still only generates a 0.025% drop in output. The reason
for this small effect is that our parameter estimates imply strong general equilibrium effects
that dampen the aggregate effects of uncertainty on economic activity. Most notably, the
monetary authority’s estimated strong and rapid response to current conditions implies a
nominal interest rate reaction that considerably reduces aggregate fluctuations. While our
model is capable of generating strong uncertainty effects, such a calibration would imply
unrealistically large business cycle fluctuations. Thus, SMM estimates the amplification of
uncertainty shocks to be rather low.

The small effect of uncertainty on output does not imply that time-varying volatility is
unimportant. In accordance with the previous literature (e.g. Justiniano and Primiceri, 2008;
Primiceri, 2005), our findings suggest that the Great Moderation can be explained through
a combination of “good luck” and “good policy”. The historical variance estimates indicate
that the standard deviation of both technology and policy shocks significantly decreased since
the mid-1980s. However, most of the effect of this time-varying volatility comes in the form
of a different size of the realized level shocks instead of through the uncertainty-effect.

As our analysis focuses on aggregate uncertainty, it does not necessarily contradict studies
finding large effects of idiosyncratic uncertainty. However, these studies clearly require different
transmission mechanisms that do not give rise to large general equilibrium effects (see also
Bachmann and Bayer, 2011).
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A Data construction

Unless otherwise noted, all data are from the Bureau of Economic Analysis (BEA)’s NIPA
Tables and available in quarterly frequency from 1960Q1 until 2010Q3.

A.1 Data for the exogenous processes

Capital and labor tax rates. Our approach to calculate average tax rates closely follows
Mendoza et al. (1994), Jones (2002), and Leeper et al. (2010). We first compute the average
personal income tax rate

τ c = IT

W + PRI/2 + CI
,

where IT is personal current tax revenues (Table 3.1 line 3), W is wage and salary accruals
(Table 1.12 line 3), PRI is proprietor’s income (Table 1.12 line 9), and CI ≡ PRI/2 +RI +
CP +NI is capital income. Here, RI is rental income (Table 1.12 line 12), CP is corporate
profits (Table 1.12 line 13), and NI denotes the net interest income (Table 1.12 line 18).

The average labor and capital income tax rates can then be computed as

τ p = τ p(W + PRI/2) + CSI

EC + PRI/2 ,

where CSI denotes contributions for government social insurance (Table 3.1 line 7), and EC
is compensation of employees (Table 1.12 line 2), and

τ k = τ pCI + CT + PT

CI + PT
,

where CT is taxes on corporate income (Table 3.1 line 5), and PT is property taxes (Table
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3.3 line 8).
Government spending. Government spending is the sum of government consumption

(Table 3.1 line 16) and government investment (Table 3.1 line 35) divided by the GDP deflator
(Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Monetary policy shock. Computed as the residual from a Taylor rule as in Clarida
et al. (2000) (see Appendix B.7). The sample only starts in 1961Q1 as we lose the first year
of data due to the use of four time lags as instruments in the GMM estimation.

Total factor productivity (TFP). The construction of TFP closely follows Beaudry
and Lucke (2010), i.e.

TFPt = Yt
KαH1−α .

To construct K, we use data on capital services for the private non-farm business sector
(Bureau of Labor Statistics (BLS), Historical Multifactor Productivity Tables),23 multiply
it by the total capacity utilization rate (Federal Reserve System, Statistical Release G.17 -
Industrial Production and Capacity Utilization), and divide it by the civilian noninstitutional
population above 16 years of age (BLS, Series LNU00000000Q). Real GDP per capita Y is
nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (line 1 in Table 1.1.4) and
the population, and per capita hours H are non-farm business hours worked (BLS, Series
PRS85006033) divided by the population. The capital share α is set at 0.295, the mean over
the sample compiled by the BLS (Bureau of Labor Statistics (BLS), Historical Multifactor
Productivity Tables). The TFP-series ends in 2009Q4.

Relative price of investment. The relative price of investment is taken from Schmitt-
Grohé and Uribe (2011) and only available until 2006Q4. They base their calculations on
Fisher (2006).

The different sample lengths are not an issue as we estimate each exogenous process
separately. Using the longest available sample assures that we make optimal use of the
available information for each series.

A.2 Data for SMM

Output. Nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (Table 1.1.4 line 1)
and the civilian noninstitutional population (BLS, Series LNU00000000Q).
Investment. Sum of Residential fixed investment (Table 1.1.5 line 12) and nonresidential
fixed investment (Table 1.1.5 line 9) divided by the GDP deflator (Table 1.1.4 line 1) and the
civilian noninstitutional population (BLS, Series LNU00000000Q).

23Quarterly data is interpolated from the annual series using cubic spline interpolation.
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Consumption. Sum of personal consumption expenditures for nondurable goods (Table
1.1.5 line 5) and services (Table 1.1.5 line 6) divided by the GDP deflator (Table 1.1.4 line 1)
and the civilian noninstitutional population (BLS, Series LNU00000000Q).
Real wage. Hourly compensation in the nonfarm business sector (BLS, Series PRS85006103)
divided by the GDP deflator (Table 1.1.4 line 1).
Inflation. Computed as the log-difference of the GDP deflator (Table 1.1.4 line 1).
Nominal interest rate. Geometric mean of the effective Federal Funds Rate (St.Louis FED
- FRED Database, Series FEDFUNDS).

A.3 Additional data for GMM

Interest term spread. We use the difference of the quarterly geometric mean of the 10-Year
Treasury Constant Maturity Rate (FRED Database, Series GS10) and the quarterly geometric
mean of the 3-Month Treasury Bill: Secondary Market Rate (FRED Database, Series TB3MS).
Money growth rate. Growth rate of the M2 Money Stock (FRED Database, Series M2SL).
Commodity inflation. Commodity inflation is computed as the growth rate of the X12-
seasonally adjusted Producer Price Index: All Commodities (FRED Database, Series PPI-
ACO).
Output gap. The output gap is constructed as the percentage difference between real GDP
(FRED Database, Series GDPC96) and Real Potential Gross Domestic Product (FRED
Database, Series GDPPOT).

B Econometric Methods

B.1 The Particle Filter

For ease of exposition, let xt be a generic observable AR(1) process

xt = ρxt−1 + eσtνt , νt ∼ N (0, 1) (B.1)

where the unobserved/latent state σt follows a stochastic volatility process

σt = (1− ρσ) σ̄ + ρσσt−1 + ηεt , εt ∼ N (0, 1), (B.2)

where σ̄ is is the unconditional mean of σt. The shock to the volatility εt is assumed to be
independent from the level shock νt.

Hence, a filter is required to obtain the so-called filtering density p (σt|xt; Θ). Due to
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the nonlinearity embedded in the stochastic volatility setup of the shocks, we cannot simply
employ the Kalman filter as in the case of linearity and normally distributed shocks. Instead,
we employ the Sequential Importance Resampling (SIR) particle filter, a special application
of the more general class of Sequential Monte Carlo methods, to evaluate the likelihood
(Fernández-Villaverde and Rubio-Ramírez, 2007; Fernández-Villaverde et al., forthcoming).
Given the structure in (B.1) and (B.2) and some initial value x0, the factorized likelihood of
observing xT can be written as

p
(
xT ; Θ

)
=

T∏
t=1

p
(
xt|xt−1; Θ

)

=
∫
p (x1|x0, σ0; Θ) dσ0

T∏
t=2

∫
p (xt|xt−1, σt; Θ) p

(
σt|xt−1; Θ

)
dσt

=
∫ 1
eσ0
√

2π
exp

[
−1

2

(
x1 − ρx0

eσ0

)2
]
dσ0

×
T∏
t=2

∫ 1
eσt
√

2π
exp

[
−1

2

(
xt − ρxt−1

eσt

)2
]
p
(
σt|xt−1; Θ

)
dσt ,

(B.3)

where xt is a (t × 1) vector that stacks the observations on x up to time t, Θ stacks the
parameters, and the last equality follows from the assumption of normally distributed shocks.
Although we do not have an analytical expression for p (σt|xt−1; Θ) , t = 1, . . . , T , and can
therefore not compute it directly, we can employ the particle filter to estimate the likelihood
by iteratively drawing from p (σt|xt−1; Θ).

The underlying idea of the particle filter is to use an approximation of the filtering density
p (σt|xt; Θ) with a simulated distribution generated from empirical data. This distribution
can be formed from mass points, or particles,

p
(
σt|xt; Θ

)
'

N∑
i=0

ωitδσit (σt),
N∑
i=0

ωit = 1, ωit > 0 (B.4)

where δ is the Dirac delta function and ωit is the weight attached to the respective draw/particle
σit (Godsill et al., 2004). We can then use a Sequential Importance Resampling (SIR)-approach
to update particles from time t to t + 1 and obtain the new filtering distribution at t + 1
(see e.g. Fernández-Villaverde et al., forthcoming). A convenient by-product of this filtering
approach is that we also approximate p (σt|xt−1; Θ), the distribution we need to build the
likelihood.

The SIR is a two-step procedure that, by using a prediction and a resampling/filtering step
for each time period, ultimately allows to iteratively draw from p (σt|xt−1; Θ). Starting with
p (σ0|x0; Θ) = p (σ0; Θ), the prediction step uses the law of motion for the states f(σt+1|σt),
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equation (B.2), to obtain the conditional density p (σ1|x0; Θ) = p (ε1) p (σ0|x0; Θ). That is,
given N draws

{
σit|t
}N
i=1

from p (σt|xt; Θ), (here p (σ0|x0; Θ)) and a draw of exogenous shocks

εit ∼ N (0, 1), we can use equation (B.2) to compute
{
σit+1|t

}N
i=1

.24

Next, the resampling/filtering step uses importance resampling to update the conditional
probability from p (σt|xt−1; Θ) to p (σt|xt; Θ). The crucial idea is that if

{
σit|t−1

}N
i=1

is a

draw from p (σt|xt−1; Θ) and {σ̃it}
N
i=1 is a draw with replacement from

{
σit|t−1

}N
i=1

using the
resampling probabilities

ωit =
p
(
xt|xt−1, σit|t−1; Θ

)
∑N
i=1 p

(
xt|xt−1, σit|t−1; Θ

) , (B.5)

then
{
σt|t
}N
i=1

= {σ̃it}
N
i=1 is a draw from p (σt|xt; Θ). The resampling with probabilities given

in (B.5) serves two purposes. First, the reweighting implements an importance sampling
approach, i.e. draws are obtained from a proposal density that is easy to draw from and are
then subsequently reweighted to reflect the density to be approximated (see Arulampalam
et al., 2002, for a derivation).25 Second, without the resampling step, there would be an
increase in the unconditional variance of ωt over time, yielding only one particle with non-zero
weight (known as degeneracy or sample impoverishment, see Arulampalam et al. (2002)).
By resampling, we keep only those particles with high ωit (i.e. those that are closer to the
true state vector). Having now obtained draws from p (σt|xt; Θ), we can again start with the
prediction step to obtain draws for time period t+ 1.

After T iterations, we get an estimate of our likelihood as26

p
(
xT ; Θ

)
' 1
N

N∑
i=1

1
eσ0|0
√

2π
exp

[
−1

2

(
x1 − ρx0

eσ0|0

)2
]

×
T∏
t=2

1
N

N∑
i=1

1
eσt|t−1

√
2π

exp
[
−1

2

(
xt − ρxt−1

eσt|t−1

)2
]
.

(B.6)

B.2 Particle Smoother

We employ the backward-smoothing routine suggested by Godsill et al. (2004) to draw from the
smoothing density p(σT |xT ; Θ) to get a historical distribution of the volatilities. Specifically,

24The notation t+ 1|t indicates a draw at time t+ 1 conditioned on the information available at time t.
25In our case, we use the prior density p

(
σt|σt−1; Θ

)
as the importance density.

26See Fernández-Villaverde and Rubio-Ramírez (2007) and Doucet and Johansen (2009) and the references
contained therein for the conditions required for a central limit theorem to apply, yielding a consistent
estimator of p

(
xT ; Θ

)
.
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we start with the factorization

p(σT |xT ; Θ) = p(σT |xT ; Θ)
T−1∏
t=1

p(σt|σt+1:T , x
T ; Θ) . (B.7)

The second factor can be further simplified

p(σt|σt+1:T , x
T ; Θ) = p(σt|σt+1, x

t; Θ)

= p(σt|xt; Θ)f(σt+1|σt)
p(σt+1|xt)

∝ p(σt|xt; Θ)f(σt+1|σt) ,

(B.8)

where the first equality results from the Markovian properties of the model and f denotes the
state transition density following from equation (B.2). Equation (B.4) describes how to approx-
imate p(σt|xt; Θ) by forward filtering. Therefore, we can approximate p(σt|σt+1:T , x

T ; Θ) ∝
p(σt|xt; Θ)f(σt+1|σt) by

p(σt|σt+1, x
T ; Θ) '

N∑
i=1

ωit|t+1δσit(σt) , (B.9)

where the new weights ωit|t+1 are given by

ωit|t+1 = ωitf(σt+1|σit)∑N
j=1 ω

j
t f(σt+1|σjt )

. (B.10)

and the ωit are the weights obtained in the filtering step. Denote with σ̃it the ith draw from the
smoothing density at time t. At time T, we can obtain draws σ̃iT by drawing from p(σT |xT )
with the weights ωiT . Then, going backwards in time, we can use the above recursions to
iteratively obtain draws σ̃it by resampling using the weights given in (B.10).

B.3 Tailored Randomized Block Metropolis Hastings Algorithm

Let Θ, p
(
xT |Θ

)
, and π(Θ) denote the vector of parameters to be estimated, the likelihood

function, and the prior distribution of the parameters, respectively. The posterior distribution
π(Θ|xT ) can be computed as

π
(
Θ|xT

)
∝ p

(
xT |Θ

)
π (Θ) . (B.11)

Given this usually analytically intractable posterior, most macroeconomic applications employ
a Random Walk Metropolis-Hastings (RW-MH) algorithm to generate draws from the posterior
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distribution. However, the standard RW-MH algorithm often has poor mixing properties,
leading to highly autocorrelated draws, and is therefore often very inefficient. Hence, to
increase the efficiency, we use the Tailored Randomized Block Metropolis Hastings (TaRB-MH)
algorithm proposed by Chib and Ramamurthy (2010).27 Instead of in each iteration step
simultaneously drawing an entire new parameter vector from a proposal density, the parameter
vector is randomly split up into several blocks. Each block is then subsequently updated by a
separate MH run, conditional on the previous step’s values of the parameters in the other
blocks. Ideally, the blocks should be formed according to the correlation between parameters,
with highly correlated parameters belonging to the same block. However, we have no a priori
knowledge about the correlation between parameters and resort to a blocking scheme where
both the number of blocks and its composition are randomized in each step. This algorithm
provides a good compromise between the standard RW-MH and tailored multiple block MH
algorithms that use multiple blocks, which are particularly designed for the problem at hand.
The second feature that improves on the standard RW-MH is that in each step the proposal
density is “tailored” to the location and the curvature of the posterior density in that block
by using a non-derivative based global optimizer. We deviate from Chib and Ramamurthy
(2010) by using the CMAES algorithm (Hansen et al., 2003) instead of a simulated annealing
as the former has been shown to be more efficient (Andreasen, 2010).28 Moreover, it requires
considerably less tuning than a simulated annealing. The TaRB-MH algorithm proceeds as
follows.

1. At each iteration step n, n = 1, . . . , N , the elements of the parameter vector θ are
separated into random blocks (θn,1, θn,2, . . . , θn,pn) by perturbing their initial ordering
and assigning the first parameter in the perturbed vector to the first block and each
following parameter with probability p = 0.5 to a new block, leaving us with 2.5 blocks
on average as we estimate 5 parameters.

2. At each iteration step n, each block θn,l, l = 1, . . . , pn is sampled by a Metropolis-
Hastings step using a proposal density adapted to the posterior in the following way.
Denote with θn,−l the most current value of all blocks except for the lth one, i.e. their
value at the end of step n− 1. To generate a new draw for θn,l, the CMAES-algorithm
is used to find

θ̂n,l = arg max
θn,l

log
[
p
(
xT |θn,l, θn,−l

)
π (Θ)

]
. (B.12)

That is, we use a global optimizer to maximize the posterior over the current block
l, given the value of all other parameters at the end of step n− 1. Having found the

27Using the TaRB-MH decreased the inefficiency factors from values around 10 to below 2.
28For an intuitive introduction to the working of the CMAES algorithm, see Binsbergen et al. (2010).
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“conditional mode” θ̂n,l, we compute the curvature of the target posterior distribution in
the standard way as the negative inverse of the Hessian at the “conditional mode”

Vn,l =
−∂ log

[
p
(
xT |θn,l, θn,−l

)
π (Θ)

]
∂θn,lθ′n,l

−1∣∣∣∣∣∣∣
θn,l=θ̂n,l

. (B.13)

Following Chib and Ramamurthy (2010), we use a multivariate t-distribution with ν
degrees of freedom as proposal density for θn,l, ql

(
θn,l| θn,−l, xT

)
. Mean and variance

are set to the “conditional mode” and the negative inverse of the Hessian at this point:

ql
(
θn,l| θn,−l, xT

)
= t

(
θn,l| θ̂n,l, Vn,l, ν

)
. (B.14)

In the Metropolis-Hastings-step, a proposed value θ∗n,l is accepted as the new value of
the block with probability

αl
(
θn,l, θ

∗
n,l

∣∣∣ θn,−l, xT) = min
p
(
xT |θ∗n,l, θn,−l

)
π
(
θ∗n,l

)
p (xT |θn,l, θn,−l) π (θn,l)

t
(
θn,l| θ̂n,l, Vn,l, ν

)
t
(
θ∗n,l

∣∣∣ θ̂n,l, Vn,l, ν) , 1
 . (B.15)

If the proposed value θ∗n,l is rejected, we set θn+1,l = θn,l. This step is repeated for all pn
blocks before the algorithm starts over with step 1.

Setting ν = 5 and iterating over steps 1 and 2, we can - after a suitable burn-in-period -
obtain samples from the desired posterior distribution, which is the invariant distribution of
the resulting Markov Chain. In our case, a burn-in of 2500 proved sufficient.

B.4 Model Solution

Let st denote the ns × 1 vector of state variables in deviations from steady state, including
the exogenous shocks and the perturbation parameter Λ, and let sit denote its ith entry. The
policy function/law of motion for an arbitrary model variable X̂t then has the form

X̂t =
ns∑
i=1

ξXi s
i
t + 1

2

ns∑
i=1

ns∑
j=1

ξXi,js
i
ts
j
t +

ns∑
i=1

ns∑
j=1

ns∑
l=1

ξXi,j,ls
i
ts
j
ts
l
t , (B.16)

where the ξ’s are scalars that depend on the deep parameters of the model and hats denote per-
centage deviations from steady state. Equation (B.16) shows why lower-order approximations
would not be sufficient for our purpose.

As is well known, a first-order approximation exhibits certainty equivalence. This implies
ξXv = 0, where v denotes the position of a volatility shock in the state vector s. That is, up to
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first order, uncertainty shocks do not enter the policy function at all.
For a second-order approximation, it is well known from Schmitt-Grohé and Uribe (2004)

for the homoscedastic case that uncertainty only enters the policy function through a constant
term via the second derivative with respect to the perturbation parameter, i.e. through
ξΛ,Λ 6= 0. However, things are more complicated in the heteroscedastic case where shocks
to the variance occur, leading to an additional effect. Fernández-Villaverde et al. (2010)
prove that in this case, the volatility shocks additionally only enter the policy function with
non-zero coefficients in their interaction term with the respective level shock. Algebraically,
only the cross-product of σ̂i× ν̂i is different from 0. In contrast, all other cross-terms with the
uncertainty shocks are zero, i.e ξXv,j 6=u = 0, where v and u denote the positions of a volatility
and its corresponding level shock in the state vector s, respectively. Hence, the effect of
uncertainty is always mediated through level shocks. It is not possible to shock the variance
of the level shocks independently from the level shock as its effect would be 0 by construction.

Only in the third-order approximation do the volatility shocks enter the policy function
separately from the level shocks in a non-constant form. Most importantly, the term ξi,Λ,Λ is
in general different from 0 for all volatility shocks.

B.5 Simulated Method of Moments

The idea of the Simulated Method of Moments (SMM) is the following. Let xt be a time
t vector of observables from a stationary and ergodic distribution and let {xt}Tt=1 be the
corresponding sequence. Furthermore, let m (xt) denote a k × 1 vector of empirical moments
computed from this data. Denote with {xsimt (θ)}aTt=1 the corresponding time series of length
aT generated from simulating the model using the p×1 parameter vector θ ∈ Θ, with Θ ⊂ Rp.
Let m (xsimt (θ)) be the vector of simulated moments computed from the artificial data. The
SMM estimator is the value of θ that satisfies

θ̂ = arg min
θ∈Θ

[
m (xt)−m

(
xsimt (θ)

)]′
W
[
m (xt)−m

(
xsimt (θ)

)]
, (B.17)

where W is a p× p positive definite weighting matrix. Under the assumption that the model
with θ = θ0 is a correct representation of the true process that generated m (xt) and the
regularity conditions spelled out in Duffie and Singleton (1993), θ̂ is a consistent estimator of
θ0 with asymptotic distribution

√
T
(
θ̂ − θ0

)
d−→ N

(
0, (1 + 1/τ) (J ′WJ)−1

J ′WSWJ (J ′WJ)−1)
, (B.18)
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where
S = lim

T→∞
V ar

(
(1/
√
T )

T∑
t=1

m(xt)
)
, (B.19)

and J = E(∂m(xsimt )/∂θ) (see Ruge-Murcia, 2010).
This estimator is asymptotically efficient when using the weighting matrix

W =
(
V longrun

)−1
=
[

lim
T→∞

V ar

(
1√
T

T∑
t=1

m (xt)
)]−1

. (B.20)

The ideal weighting matrix places the most weight on the linear combination of moments
that are the most precisely measured in the data. However, for two reasons, we use only the
diagonal of the optimal weighting matrix:

W diag = diag
(
V longrun

)−1
. (B.21)

First, we would like to put more weight on moments that are actually observed in the data and
that are economically meaningful, rather than on a linear combination of moments (see also
Cochrane, 2005). Second, in practice, fully specified weighting matrices often lead to diverging
parameter estimates. As shown in Ruge-Murcia (2010), using only the main diagonal of the
optimal weighting matrix leads to a loss in efficiency but nevertheless delivers good results in
most cases.

The simulation proceeds as follows. Starting at the deterministic steady state, we simulate
the model for 3015 quarters using shocks drawn from the estimated shock distributions.
Shocks larger than two standard deviations are trimmed. To assure non-explosive behavior of
the simulations, we use the pruning algorithm of Kim et al. (2008). We discard the first 2000
quarters as a burn-in in order to reach the ergodic distribution. We then use the remaining
1015 quarters to compute the respective moments. The results are robust to using a longer
burn-in period. The choice of using five times the length of the original data sample (i.e.
a = 5) to compute the moments is motivated by the simulations in Ruge-Murcia (2010),
who finds this choice to deliver a good balance between the precision of the estimates and
computation time.

B.6 Impulse Responses

The nonlinearity of our model complicates the computation of impulse responses compared
to linear models. We follow Fernández-Villaverde et al. (forthcoming) and generate impulse
responses as the response to a two standard deviation shock to uncertainty at the ergodic
mean. First, we simulate the model for 2,000 quarters by drawing shocks from the respective
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estimated distributions. Shocks larger than two standard deviations are trimmed to assure
convergence, which technically depends on the shocks being bounded. To assure non-explosive
behavior of the simulations, we use the pruning algorithm of Kim et al. (2008). We discard
the first 2,000 quarters as a burn-in in order to reach the ergodic distribution and use the
next 675 quarters to compute the ergodic mean. Starting at the ergodic mean, we compute
the IRFs as the percentage difference of the respective variables between the system shocked
with the respective shock and the baseline model response, i.e. the model response without
shocks. To account for sampling uncertainty, we generate 50 different IRFs with different
starting values of the random number generator and take the cross-sectional average as our
impulse response.

B.7 GMM

We construct the monetary policy shocks by specifying the Federal Reserve’s policy reaction
function and estimating it by the generalized method of moments (GMM). Our approach
is similar to the one used in Clarida et al. (2000), with the difference that Clarida et al.
(2000) use a forward-looking policy reaction function, while we use a rule that reacts to
contemporaneous variables to stay consistent with our DSGE-model. Specifically, the policy
reaction function to be estimated is given by

rt = ρrt−1 + (1− ρ) [r̄ + φπ (πt − π̄) + φyy
gap
t ] + εt , (B.22)

where πt is inflation with target rate π̄, ygapt is the output gap, rt−1 allows for interest
smoothing, r̄ ist the target nominal interest rate, and εt is an error term. Using the vector
of instruments zt, the set of moment conditions for our GMM estimation procedure can be
written as

E [{rt − ρrt−1 − α− βπt − γygapt } zt] = 0 (B.23)

where α = (1− ρ) (r̄ + φππ̄) collects all constant terms, β = (1− ρ)φπ, and γ = (1− ρ)φy.
Hence, we regress the average effective Federal Funds Rate in the first month of the quarter

on the lagged FFR, the inflation rate, and the output gap, where all rates are annualized.
The set of instruments includes four lags of the FFR, the inflation rate, the output gap,
commodity price inflation, money growth, and the interest term spread. Because we are only
interested in the residuals of the policy reaction function ε̂t, we do not need to separately
identify the target nominal rate r̄ and target inflation π̄.

Table 9 presents the estimation results, which are all in the range typically reported in the
literature. There is strong evidence of interest smoothing with ρ = 0.898. The point estimates
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Table 9: GMM Estimation of Taylor Rule

Coefficient Mean Std. Error t-Statistic Prob.
ρ 0.898 0.018 48.926 0.000
α 0.001 0.001 0.874 0.383
β 0.1741 0.027 6.361 0.000
γ 0.102 0.017 5.950 0.000
R-squared 0.890 Mean dependent var 0.058
Adjusted R-squared 0.888 Sum squared resid 0.027
S.E. of regression 0.012 J-statistic 18.545
Durbin-Watson stat 2.314 pval(J-statistic) 0.552

Note: Kernel: Bartlett, Bandwidth: Fixed (4), No prewhitening; Simultaneous weighting matrix & coefficient
iteration; Convergence achieved after: 28 weight matrices, 29 total coef iterations.

of the feedback parameters are φπ = 1.718 and φy = 1.003. The test of overidentifying
restrictions shows that the model cannot be rejected at conventional significance levels.

C Diagnostics

C.1 Testing for Heteroscedasticity

Table 10 presents evidence of the need to model time-varying volatility. Despite our relatively
short sample size and the low power of tests for heteroscedasticity, the null hypothesis of
homoscedastic shocks can be rejected at the 10% level for all series except labor taxes. This
result is consistent with evidence that the standard deviation of structural shocks has changed
over time (see e.g. Justiniano and Primiceri, 2008; Primiceri, 2005).

Table 10: Tests for Heteroscedasticity

τ k τn z zI g m

White 0.000* 0.932 0.001* 0.042* 0.360 0.068*
WW 0.169 0.523 0.265 0.005* 0.076* 0.068*
BPK 0.004* 0.890 0.126 0.770 0.511 0.298

Notes: Asterisks indicate significance at the 10% level. White refers to the standard White (1980)-test, WW
refers to the Wooldridge (1990)-version of this test, and BPK refers to the Breusch and Pagan (1979)/Koenker
(1981)-test.
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C.2 Convergence Diagnostics

Table (11) shows the results from the Geweke (1992)-convergence diagnostics that compares
the means of the first 20% of draws with that of the last 50% of the draws. In general, all
MCMC chains have converged to their stationary distribution as indicated by the p-values of
the χ2-test for equal means. Figures 8 to 13 show the corresponding mean plots.

Table 11: Geweke (1992) Convergence Diagnostics

Parameter 4% taper 8% taper 15% taper 4% taper 8% taper 15% taper
Capital Tax Rates Labor Tax Rates

ρ1 0.160 0.165 0.145 0.909 0.890 0.887
ρ2 0.947 0.941 0.937 0.926 0.913 0.904
ρσ 0.623 0.596 0.566 0.648 0.652 0.653
ησ 0.929 0.927 0.919 0.327 0.319 0.271
σ̄ 0.760 0.744 0.738 0.922 0.921 0.917

Total Factor Productivity Investment Specific Technology
ρ1 0.891 0.887 0.879 0.199 0.174 0.124
ρ2 0.679 0.681 0.665 0.353 0.340 0.297
ρσ 0.643 0.615 0.583 0.546 0.534 0.520
ησ 0.456 0.453 0.391 0.638 0.649 0.638
σ̄ 0.772 0.765 0.706 0.304 0.260 0.187

Government Spending Monetary Policy Shock
ρ1 0.608 0.598 0.572 0.192 0.200 0.181
ρ2 0.605 0.606 0.558
ρσ 0.550 0.561 0.562 0.231 0.227 0.155
ησ 0.293 0.267 0.232 0.885 0.870 0.860
σ̄ 0.412 0.402 0.369 0.066 0.078 0.071

Notes: Numbers are p-values of the χ2-test for equal means of the first 20% of draws and the last 50% of the
draws (after the first 2500 draws are discarded as burn-in).
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Figure 8: Evolution of MCMC sampler over time for τ k.
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Figure 9: Evolution of MCMC sampler over time for τn.
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Figure 10: Evolution of MCMC sampler over time for z.
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Figure 11: Evolution of MCMC sampler over time for zI .
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Figure 12: Evolution of MCMC sampler over time for g.
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Figure 13: Evolution of MCMC sampler over time for m.
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C.3 Model Misspecification Diagnostics

Following Kim et al. (1998), we can test the specification of our SV-model. Using N draws
from the prediction density p (xt|xt−1; Θ), we can compute the probability that x2

t+1 will be
less or equal than the actually observed value of

(
xobst+1

)2
:

Pr
(
x2
t+1 6

(
xobst+1

)2 ∣∣∣xt ; Θ
)
' ut+1 = 1

N
Pr
(
x2
t+1 6

(
xobst+1

)2 ∣∣∣xt, σt+1|t ; Θ
)
, (C.1)

∀t = 1, . . . T − 1. If the SV-model is correctly specified, the sequence of ut converges in
distribution to i.i.d. uniform variables as the number of particles N goes to infinity (Rosenblatt,
1952). Under the null hypothesis of a correctly specified model, the ut can be transformed
to i.i.d. standard normal variables using the inverse normal CDF. Hence, we can perform a
simple test for misspecification by testing the resulting series for their normality. Figure 14
shows the corresponding QQ-plots.
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Figure 14: QQ-plots. From left to right and top to bottom: capital taxes, labor taxes,
TFP, investment-specific technology, monetary policy shocks, and government
spending.

Table 12 presents the results from three commonly used normality tests. In general, a
correct specification of the model tends to not be rejected. Only for z, the Jarque-Bera and
the Kolmogorov-Smirnov tests reject normality. However, this effect is driven by the outliers
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visible in the bottom left corner of Figure 14. In contrast, when shutting off the time-varying
volatility and setting the volatility to its unconditional mean, the specification is generally
rejected (results are not shown here).

Table 12: Tests for Model Misspecification

JB KS SW
τ k 0.066 0.039** 0.125
τn 0.141 0.960 0.135
z 0.037** 0.035** 0.085
zI 0.377 0.076 0.586
g 0.500 0.747 0.528
m 0.052 0.377 0.012**

Note: Asterisks indicate significance at the 5% level. JB refers to the Jarque and Bera (1987)-test, KS refers
to the Kolmogorov (1933)/Smirnov (1948)-test, and SW refers to the Shapiro and Wilk (1965)-test.
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