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Outline

We seek to provide answers to possible questions arising from
forecasting of factor augmented models under generalised loss
functions.

Factor Models Stochastic Volatility

Asymmetric Loss
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Why Factor Models?

• Increased availability and use of comprehensive data sets.

• Large number of series can be summarized by the use of
Principal Component Analysis (PCA).

• Stock and Watson (2002) show that using PCA extracted
factors in the predictive regression does not affect the
consistency of the forecast function.

• Bai (2003) showed the rate of convergence and the limiting
distributions of the PCA estimated factors, factor loadings,
and common components.
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The Basic Model

We start with the usual linear forecasting model

yt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkft,k + vt+h, t = 1, 2, . . . , T , (1)

where the forecast error vt+h. In practice, one resorts to a
two-stage procedure, given that observations on N auxiliary
variables xt,i are available, from which ft,k may be estimated in a
first stage. Assuming linear measurement equations for the
factors, we have that

xt,i =

r∑
k=1

λi,kft,k + ut,i. (2)

This ultimately takes us to the feasible predictive regression

yt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkf̂t,k + vt+h, (3)
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Why Asymmetric Loss Functions?

• There are recent studies which focus on more general loss
functions, in particular asymmetric loss functions.

◦ Artis and Marcellino (2001): IMF and OECD forecasts of the
deficit of G7 countries were found to be systematically biased
towards over or under prediction in compared to
mean-squared optimal forecasts.
◦ Christodoulakis and Mamatzakis (2008, 2009) found

asymmetric preferences of EU institutional forecasts.
◦ Pierdzioch et al. (2011) analysed the loss function of Bank of

Canada, along with Pierdzioch et al. (2013) where evidence on
the use of asymmetric loss functions of various forecasters on
yen/dollar exchange rate forecasts is found.
◦ Elliott et al. (2005), Clements et al. (2007), Patton and

Timmermann (2007), Capistrán (2008) so on.
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An example for asymmetric loss function

Source: Variants in Economic Theory: Selected Works of Hal R. Varian

Why not Linex Loss function in our study as well? → Requires
infinitely many moments!

The loss function we are going to use has the following structure
(Elliott et al. (2005))

L
(
yt+h − yft+h

)
=
(
α+ (1− 2α) I

(
yt+h − yft+h

)) ∣∣∣yt+h − yft+h∣∣∣p .
(4)
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Why Stochastic Volatility?

• The volatility of macroeconomic variables is not constant in
general.

• The question we ask is: does usual factor extraction capture
all the relevant information under a given loss function?

• Patton and Timmermann (2007) showed that for the loss
functions of the type we use, the optimal forecast has the form

yoptt+h = E (yt+h| yt, yt−1, . . . , xt,i) + C
√

Var (yt+h| yt, yt−1, . . . , xt,i)
(5)

for some constant C depending on the loss function and the shape
of the conditional distribution.
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Three Questions

• Can we estimate the predictive regression with extracted
factors under a given loss function instead of using Ordinary
Least Squares estimation(OLS) for evaluating the forecasts?

• Are the PCA-extracted factors still forecast relevant under
the given loss function?

• Does usual factor extraction actually capture all relevant
information under the given loss function?
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First Question - Predictive regression under
asymmetric loss

Let yt be the series for which an h-step ahead forecast is required.
Given the available information set Ft = {ft,k, yt, yt−1, . . .}, the
optimal forecast is given by

yoptt+h = arg min
y∗

E (|L (yt+h − y∗)| |Ft) , (6)

where L (·) is the relevant loss function quantifying the cost of
discrepancies between a given forecast and the future realization
of yt+h. The estimated optimal forecast is

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +

r∑
k=1

b̃kf̂t,k. (7)

which is obtained by minimizing the observed loss

c̃, ãj , b̃k = arg min
c∗,a∗j ,b

∗
k

1

T

T−h∑
t=q

L
(
yt+h − ỹ?t+h

)
(8)
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First Question - Predictive regression under
asymmetric loss

Proposition

Let the auxiliary variables xt,i obey Assumptions A-E in Bai
(2003). Furthermore, assume that the factors ft,k and the forecast
errors vt+h are strictly stationary and ergodic, and that
E (L′ (vt+h)| yt, yt−1, . . . , ft,k) = 0. Finally, let all series have
finite moments of order p. It then holds for the estimated optimal
forecast from (7) that

ỹoptt+h

p→ yoptt+h (9)

as N,T →∞ such that T/N → 0.
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Second Question - Forecast relevant factors

• Factor extraction by PCA relies on the eigenvalue
decomposition of the covariance matrix of the data set.
Principal components are chosen by starting with the ones
corresponding to the highest eigenvalue.

• What if these PCA extracted factors are not forecast
relevant? To this extend, we employ Least Absolute
Shrinkage and Selection Operator (LASSO) to make sure that
we use forecast relevant factors.
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Third Question - Extracting additional relevant
information

To exploit the insight of capturing additional information from
the volatility of macroeconomic variables we assume a stochastic
volatility model

vt+h = et e
1
2(gt+

∑s
l=1 ξlht,l)

where gt is an unforecastable component (stochastic or constant),
while ht,l could be forecasted using the information from the
auxiliary series. Should the conditional variance of the
idiosyncratic components in the factor model depend in a similar
manner on ht,l

ut,i = et,i e
1
2(gt,i+

∑s
l=1 ht,lξl,i),

By following Nelson (1991) in using the exponential, we have

log u2t,i = log e2t,i + gt,i +

s∑
l=1

ξl,iht,l,

We can now extract ht,l from log u2t,i using PCA, leading to ĥt,l.
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Forecasting US Personal Income and Industrial
Production under Asymmetric Loss

We have the following basic forecasting model

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +

r∑
k=1

b̃kf̂t,k +

s∑
l=1

ξ̃l,iĥt,l, (10)

where the parameter estimates are obtained like before by
minimising the observed loss

L
(
yt+h − yft+h

)
=
(
α+ (1− 2α) I

(
yt+h − yft+h

)) ∣∣∣yt+h − yft+h∣∣∣2 .
(11)

by setting p = 2.
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Data

• The data set (also known as Stock and Watson data set)
consists of 131 monthly macroeconomic aggregates over the
time 1964:1-2007:12 and it is now used to forecast personal
income and industrial production.

• We evaluate the pseudo out–of–sample forecasts using factors
recursively extracted from the auxiliary data.

• Stock and Watson initially categorised the data set by
assigning each variable to one of eight main groups.
Moreover, Bai and Ng (2002) information criteria show that
eight factors survive the test.
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Cases

• We aim to observe the averaged losses occurring while
evaluating the forecasts of US personal income (PI) and
industrial production (IP)

• We have 4 cases:

◦ Case 1: exactly 8 factors.
◦ Case 2: exactly 9 factors (including the volatility factor)
◦ Case 3: selection among 8 factors.
◦ Case 4: selection among 9 factors.

• We also evaluate the averaged losses both under OLS and
Asymmetric Loss both for PI and IP.
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Results

Alpha Cases OLS-PI OLS-IP Asym Loss-PI Asym Loss-IP

0.1

1 0.2629 0.2081 0.2001 0.0879
2 0.2522 0.1898 0.2011 0.0887
3 0.2589 0.2052 0.1930 0.0871
4 0.2516 0.1887 0.1943 0.0882

0.3

1 0.2414 0.1813 0.2223 0.1395
2 0.2360 0.1712 0.2215 0.1396
3 0.2380 0.1790 0.2187 0.1381
4 0.2348 0.1702 0.2194 0.1389

0.5

1 0.2199 0.1545 0.2199 0.1545
2 0.2198 0.1527 0.2198 0.1527
3 0.2170 0.1527 0.2170 0.1527
4 0.2180 0.1516 0.2180 0.1516

0.7

1 0.1984 0.1277 0.1998 0.1414
2 0.2036 0.1341 0.2009 0.1379
3 0.1960 0.1265 0.1970 0.1397
4 0.2012 0.1331 0.1990 0.1366

0.9

1 0.1769 0.1009 0.1541 0.0897
2 0.1874 0.1156 0.1576 0.0867
3 0.1750 0.1003 0.1503 0.0881
4 0.1844 0.1145 0.1535 0.0845
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Diebold-Mariano Test

Alpha Cases DM Test–PI DM Test–IP

0.1

1 -3.42 -4.12
2 -3.21 -3.44
3 -3.68 -4.15
4 -3.51 -3.48

0.3

1 -3.15 -3.14
2 -2.52 -2.36
3 -3.48 -3.12
4 -2.86 -2.35

0.5

1 -1.38 0.36
2 -0.78 -0.57
3 0.77 0.67
4 -0.94 -0.03

0.7

1 0.26 1.21
2 -0.46 0.32
3 0.24 1.21
4 -0.49 0.31

0.9

1 -1.54 -0.57
2 -1.88 -1.37
3 -1.89 -0.64
4 -2.27 -1.47
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Conclusions

• There were 3 questions which are related to

◦ Feasible predictive regressions by using extracted factors under
asymmetric loss
◦ Forecasting with relevant factors
◦ Extracting additional relevant information

• We used recursive forecasting method to observe forecast
losses of PI and IP by making use of large number of
predictor series.

• There is a clear evidence that evaluating the forecasts under
the asymmetric loss leads smaller losses in compared to OLS
case.
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Appendix

Let yt be the series for which an h-step ahead forecast is required.
Given the available information set Ft = {ft,k, yt, yt−1, . . .}, the
optimal forecast is given by

yoptt+h = arg min
y∗

E (|L (yt+h − y∗)| |Ft) , (12)

where L (·) is the relevant loss function quantifying the cost of
discrepancies between a given forecast and the future realization
of yt+h. According to Granger (1999), loss functions should be
uniquely minimized at the origin, and be quasi-convex. We shall
work with a specific class of loss functions, introduced by Elliott
(2005); a forecast yft+h is thus evaluated by means of

L
(
yt+h − yft+h

)
=
(
α+ (1− 2α) I

(
yt+h − yft+h

)) ∣∣∣yt+h − yft+h∣∣∣p .
(13)
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Appendix

We start with the usual linear forecasting model

yt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkft,k + vt+h, t = 1, 2, . . . , T , (14)

where the forecast error vt+h cannot be predicted under L. This
does not imply, however, that vt+h could not be forecasted under
another loss function. The lack of predictability of vt+h under L
implies that the so-called generalised forecast error L′ (vt+h) is
uncorrelated with the predictors yt−j+1 and ft,k; see Granger
(1999) and Patton and Timmermann (2007). The optimal forecast
is thus given by

yoptt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkft,k.
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In practice, one resorts to a two-stage procedure, given that
observations on N auxiliary variables xt,i are available, from
which ft,k may be estimated in a first stage. Assuming linear
measurement equations for the factors, we have that

xt,i =

r∑
k=1

λi,kft,k + ut,i. (15)

Particularly with orthogonality of the common and idiosyncratic
components ft,k and ut,i, we end up in an approximate factor
model which ultimately takes us to the feasible predictive
regression

yt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkf̂t,k + vt+h, (16)

to be estimated under the relevant loss in a second stage, i.e.

c̃, ãj , b̃k = arg min
c∗,a∗j ,b

∗
k

1

T

T−h∑
t=q

L

yt+h − c∗ − q∑
j=1

a∗jyt−j+1 −
r∑

k=1

b∗kf̂t,k

 ,

(17)
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The forecast is obtained as

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +

r∑
k=1

b̃kf̂t,k. (18)

We now prove by the propositon earlier that the feasible forecast
from (7) consistently estimates (as T,N →∞) the unfeasible
optimal forecast under the relevant loss L.
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Assume a stochastic volatility model

vt+h = et e
1
2(gt+

∑s
l=1 ξlht,l)

where gt is an unforecastable component (stochastic or constant),
while ht,l could be forecasted using the information form the
auxiliary series. We follow Nelson (1991) in using the exponential,
since it allows us to avoid positivity restrictions on the
components gt and ht,l.
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Should the conditional variance of the idiosyncratic components in
the factor model depend in a similar manner on ht,l,

ut,i = et,i e
1
2(gt,i+

∑s
l=1 ht,lξl,i),

where gt,i are individual volatility components specific for xt,i. As
usually, et and et,i are standardised variables, mutually
independent and independent of ht,l, gt and gt,i. Then,

log u2t,i = log e2t,i + gt,i +

s∑
l=1

ξl,iht,l,

which is nothing else than a factor model for the log squares of
ut,i with ht,l the common components and log e2t,i + gt,i the

idiosyncratic ones. We can now extract ht,l from log u2t,i using

PCA, leading to ĥt,l.
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