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Introduction

Introduction

The test of Diebold and Mariano [1995] (DM) is one of the standard
tools used for forecast evaluation.

Reduced form approach that only imposes assumptions on the loss
differential series: stationarity and weak dependence.

We focus on the behavior of DM tests under long memory and
propose robust extensions.

Monte Carlo comparison of the memory autocorrelation consistent
(MAC) of Robinson [2005] and the extended fixed-b (EFB) approach
of McElroy and Politis [2012], (cf. also Kiefer and Vogelsang [2005]).

Re-evaluation of recent findings in literature on forecasting realized
variance.
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Introduction

Long Memory

Long memory processes are characterized by strong intertemporal
dependence.

A time series xt is a long memory series if it has a spectral density
with power law f (λ) ∼ gxλ

−2dx as λ→ 0, or if its autocovariance
function γx (τ) is γx (τ) ∼ Gxτ

2dx−1, for τ →∞. (The
autocorrelation function of an AR(1) is ρ(τ) = φ|τ |.)

Properties of the processes depend on the value of d .

Many applications in economics and finance: implied and realized
Volatility, squared and absolute returns, interest rate spreads, inflation
rates, unemployment rates, trading volumes, sales numbers,...

Kruse, Leschinski, Will Predictive Accuracy Under Long Memory December 8, 2015 4 / 33



Conventional DM-tests using HAC and fixed-b estimators

Diebold-Mariano test

Forecast error loss differentials are given by zt = g(e1t)− g(e2t),
where g(·) ≥ 0 is a loss function and eit = yt − ŷit are the forecast
errors for i = 1, 2. Let µz = E (zt) and |µz | <∞

H0 : µz = 0 against H1 : µz 6= 0.

Main assumption: zt is a weakly stationary linear short memory
process.

Let V = limT→∞ Var
(
T a [z̄ − µz ]

)
denote the long-run variance.

tDM = T a z̄√
V̂

with a = 1/2− d and 0 ≤ d < 1/2.
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Conventional DM-tests using HAC and fixed-b estimators Conventional approach: HAC

Conventional approach: HAC

Usually, V is estimated using HAC estimators (c.f. Diebold [2015]):

V̂HAC =
T−1∑

j=−T +1

k

(
j

B

)
γ̂j ,

where k(·) is a user-chosen kernel function, γ̂j denotes the j-th
sample autocovariance, and B denotes the bandwidth.

Under short memory V̂
p→ V , if b = B/T → 0 as T →∞. Then we

have

tHAC = T
1
2

z̄√
V̂HAC

⇒ N (0, 1) .
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Conventional DM-tests using HAC and fixed-b estimators Fixed-b approach

Fixed-b approach

Choi and Kiefer (2010) suggest the Fixed-b method (c.f. Kiefer and
Vogelsang 2005) for the DM test (see also Patton 2015).

Now assume instead that B/T approaches a fixed constant b ∈ (0, 1]
as T →∞ (c.f. Kiefer and Vogelsang 2005).

This results in V̂ (k, b)⇒ VQ(k , b) and in case of the Bartlett kernel:

tFB ⇒ W (1)√
Q(k , b)

,

Q(k, b) =
2

b

(∫ 1

0

W̃ (r)2dr −
∫ 1−b

0

W̃ (r + b)W̃ (r)dr

)
,

with W̃ (r) = W (r)− rW (1) denoting a standard Brownian bridge.
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Long memory in forecast error loss differentials Loss differential decomposition

Quadratic forecast error loss function

Under quadratic loss functions we can rewrite the loss differential as
follows:

zt = e2
1t − e2

2t = (yt − ŷ1t)2 − (yt − ŷ2t)2

= ŷ2
1t − ŷ2

2t − 2yt(ŷ1t − ŷ2t). (1)

Setting yt = y∗t + µy and ŷit = ŷ∗it + µi , we get

zt =− 2 [y∗t (µ1 − µ2) + ŷ∗1t(µy − µ1) + ŷ∗2t(µy − µ2)]

− 2 [y∗t (ŷ∗1t − ŷ∗2t)] + ŷ∗21t − ŷ∗22t + const. (2)

From (2) we can determine the memory of zt using results of
Chambers [1998] and Leschinski [2015].
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Long memory in forecast error loss differentials Loss differential decomposition

Assumptions

Assumption 1 (Long memory)

The time series yt , ŷ1t , ŷ2t , xt have long memory according to Definition 1 of
orders dy , d1, d2 and dx with finite expectations E (yt) = µy , E (ŷ1t) = µ1,
E (ŷ2t) = µ2 and E (xt) = µx , respectively.

Assumption 2 (No common long memory)

If at , bt ∼ LM(dx ), then at − ψ0 − ψ1bt ∼ LM(dx ) for all ψ0 ∈ R, ψ1 ∈ R and
at , bt ∈ {yt , ŷ1t , ŷ2t}.
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Long memory in forecast error loss differentials Loss differentials without common long memory

Long memory in forecast error loss differentials

Proposition 1

Under Assumptions 1 and 2, we have for the quadratic forecast error loss
differential: zt ∼ LM(dz ),

dz =



max {dy , d1, d2} , if µ1 6= µ2 6= µy

max {d1, d2} , if µ1 = µ2 6= µy

max {2d1 − 1/2, d2, dy} , if µ1 = µy 6= µ2

max {2d2 − 1/2, d1, dy} , if µ1 6= µy = µ2

max
{
2max {d1, d2} − 1/2, dy +max {d1, d2} − 1/2, 0

}
, if µ1 = µ2 = µy .

(Un)Biasedness plays an important role

Only under unbiasedness of both forecasts, a short memory series zt

might result when d1, d2 ≤ 0.25

Kruse, Leschinski, Will Predictive Accuracy Under Long Memory December 8, 2015 10 / 33



Long memory in forecast error loss differentials Loss differentials under common long memory

Properties under common long memory

Assumption 3 (Linear common long memory)

If at , bt ∼ CLM(dx , dx − b), then they can be represented as

yt = βy + ξyxt + ηt , for at , bt = yt

ŷit = βi + ξixt + εit , for at , bt = ŷit ,

with ξy , ξi 6= 0, E (ηt) = 0, ηt ∼ LM(dη) and E (εit) = 0, εit ∼ LM(dεi )
and 0 ≤ dη, dεi < dx < 1/2 for i = 1, 2.

(Simplifying assumption)
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Long memory in forecast error loss differentials Loss differentials under common long memory

Remarks

There are many possible CLM situations

CLM between one of the forecasts and the forecast objective
CLM between both forecasts but to the forecast objective
CLM between both forecasts and the forecast objective

In addition, one can consider in each case (un)biasedness

One of the forecasts is biased
Both are biased
Both are unbiased

⇒ all this leads to a (too) complex situation, look at special cases
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Long memory in forecast error loss differentials Loss differentials under common long memory

Result for biased forecasts

Proposition 2

Under Assumptions 1 and 3, the forecast error loss differential is
zt ∼ LM(dz ), where

dz ≥


d1, if µ1 6= µy

d2, if µ2 6= µy

dy , if µ1 6= µ2.

Long memory is transmitted whenever forecasts are biased.
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Long memory in forecast error loss differentials Loss differentials under common long memory

Results under unbiasedness and further restrictions

Proposition 3

Let bc denote a constant such that dx > bc > 0, for all c = 1, ..., 5. Under
Assumptions 1 and 3, with µx 6= 0, if µy = µ1 = µ2 and ξa = ξb, then
zt ∼ LM(dz ), with

dz =



max {dx + d2 − 1/2, 2d2 − 1/2, 2dx − 1/2, dε1} , if yt , ŷ1t ∼ CLM(dx , dx − b1)

max {dx + d1 − 1/2, 2d1 − 1/2, 2dx − 1/2, dε2} , if yt , ŷ2t ∼ CLM(dx , dx − b2)

max {dε1 , dε2} , if ŷ1t , ŷ2t ∼ CLM(dx , dx − b3)

max {dε1 , dε2} , if yt , ŷ1t ∼ CLM(dx , dx − b4)

and yt , ŷ2t ∼ CLM(dx , dx − b5).

Short memory only when dε1 = dε2 = 0.
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Long memory in forecast error loss differentials Size of the conventional DM test

Asymptotic rejection frequency under long memory (zt)

Proposition 4

For zt ∼ LM(dz ) with dz ∈ (0, 1/4) ∪ (1/4, 1/2), the asymptotic size of
the tHAC -statistic equals unity as T →∞.

Distribution of tHAC changes at d = 1/4 from normality
(0 ≤ d < 1/4) to non-normal Rosenblatt (1/4 < d < 1/2), see
Abadir et al. [2009].
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Long memory in forecast error loss differentials Size of the conventional DM test

Small sample rejection frequency under long memory (zt)
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Long-run variance estimation under long memory MAC estimator

MAC estimator

A key result for the MAC of Robinson [2005] estimator is that:

Var
(
T 1/2−d z̄

)
→ b0p(d)

p(d) =

{
2Γ(1−2d) sin(πd)

d(1+2d) if d 6= 0 ,

2π if d = 0 .

d is estimated with an estimator that fulfills d̂ − d = op(1/ logT )
such as the local Whittle estimator in Robinson [1995] and b0 can be
estimated by:

b̂m(d̂) = m−1
m∑

j=1

λ2d̂
j IT (λj ).
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Long-run variance estimation under long memory MAC estimator

MAC estimator

MAC estimator is then given by:

V̂ (d̂ ,md ,m) = b̂m(d̂)p(d̂).

Under the necessary regularity conditions d̂
p→ d , b̂m(d̂)

p→ b0:

tMAC = T 1/2−d̂ z̄√
V̂ (d̂ ,md ,m)

⇒ N (0, 1) .

MSE-optimal bandwidth choice m = [T 4/5] is independent of d .
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Long-run variance estimation under long memory Extended fixed-b approach

Extended fixed-b approach

McElroy and Politis [2012] extend the fixed-b approach to long
memory. They obtain the following result:

tEFB = T 1/2 z̄√
V̂ (k , b)

⇒ Wd (1)√
Q(k, b, d)

,

where Wd (r) is a fractional Brownian motion.

Note that Q(k, b, d) depends on the first and second derivatives of k,
the bandwidth fraction b and the memory parameter d .

A plug-in estimator of d is needed to obtain critical values.
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Monte Carlo study Size

Monte Carlo: Size
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Figure: Size of the tMAC statistic with bandwidth q = m. DGP1 is FI (d) and
DGP2 is ARFI (0.6, d).
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Monte Carlo study Size

Monte Carlo: Size
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Figure: Size of the tEFB statistic using the Bartlett kernel. DGP1 is FI (d) and
DGP2 is ARFI (0.6, d).
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Monte Carlo study Size

Monte Carlo: Size
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Figure: Size of the tEFB statistic using the MQS kernel. DGP1 is FI (d) and
DGP2 is ARFI (0.6, d).
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Monte Carlo study Power

Monte Carlo: Potential Power Loss
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Figure: Power comparison between tHAC and tMAC (left) and tFB and tEFB (right)
when d = 0 and T = 50.
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Monte Carlo study Power

Monte Carlo: Potential Power Loss
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Figure: Power comparison between tHAC and tMAC (left) and tFB and tEFB (right)
when d = 0 and T = 250.
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Monte Carlo study Power

Monte Carlo: Power
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Figure: Power comparison of tMAC and tEFB with Bartlett kernel and with MQS
kernel, when d = 0.2.
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Monte Carlo study Power

Monte Carlo: Size-adjusted Power (d known)
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Figure: Size-adjusted Power comparison of tMAC and tEFB with Bartlett kernel
and with MQS kernel, when d = 0.2 is known.
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Forecasting Realized Volatility

Volatility prediction

Volatility forecasting is a typical application of long memory models
(e.g. Deo et al. [2006], Martens et al. [2009] and Chiriac and Voev
[2011]).

Shift from GARCH to HAR-RV of Corsi [2009] and its extensions. We
re-evaluate recent results from the HAR-RV literature.

5-minute log-returns of the S&P 500 index from January 2, 1996 to
August 31, 2015 including close-to-open returns. From Thomson
Reuters Tick History Database.

Following Andersen et al. [2001] and Barndorff-Nielsen and Shephard
[2002] the daily realized variance is defined as

RVt =
N∑

j=1

r2
t,j .
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Forecasting Realized Volatility
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Typical features of a long memory time series. Local whittle estimates
of the memory parameter between 0.5 and 0.6.

Test of Qu [2011] does not indicate spurious long memory.

RVt contains a measurement error and multi-step forecasts of stock
variables induce short memory dynamics. We therefore use the local
polynomial Whittle plus noise (LPWN) estimator of Frederiksen et al.
[2012].
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Forecasting Realized Volatility Separation of Continuous Components and Jump Components

Separation of Continuous and Jump Components

Log-realized variance provides better approximation to the normal
distribution (cf. Andersen et al. [2001]).

HAR-RV-model of Corsi [2009] explains realized variance RVt by an
autoregression involving overlapping averages of past realized
variances.

lnRV
(h)
t = α + γ22 lnRV

(22)
t−h + γ5 lnRV

(5)
t−h + γ1 lnRV

(1)
t−h + εt , (3)

where RV
(M)
t = 22

M

∑M−1
j=0 RVt−j and εt ∼WN(0, σ2

ε).
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Forecasting Realized Volatility Separation of Continuous Components and Jump Components

Separation of Continuous and Jump Components

Andersen et al. [2007]: jump components in realized volatility.

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t) ,

µ(t) is the drift with locally bounded variation,
σ(t) is a strictly positive stochastic volatility process,
q(t) takes the value dq(t) = 1 if a jump is realized,
κ(t) determines the size of discrete jumps.

Quadratic variation of the cumulative return process decomposed into
integrated volatility plus the sum of squared jumps.

[r ]t+h
t =

∫ t+h

t
σ2(s)ds +

∑
t<s≤t+h

κ2(s) .
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Forecasting Realized Volatility Separation of Continuous Components and Jump Components

Separation of Continuous and Jump Components

Corsi et al. [2010] introduce TBPV to measure continuous volatility
component

TBPV (r)t = µ−2
1

N∑
j=2

|rt,j ||rt,j−1|I(|rt,j |2 ≤ ζj )I(|rt,j−1|2 ≤ ζj−1) ,

where ζj is a threshold function, µ1 =
√

2/π.

For N →∞, realized volatility can be decomposed into a continuous
integrated volatility component Ct and the jump component Jt .

TBPV (r)t →
∫ t+1

t
σ2(s)ds

Jt = max {RVt − TBPVt , 0} I(C-Tz > 3.09)
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Forecasting Realized Volatility Separation of Continuous Components and Jump Components

Separation of Continuous and Jump Components
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HAR-RV-TCJ model of Corsi et al. [2010] is given by

lnRV
(h)
t = α + γ22 lnC

(22)
t−h + γ5 lnC

(5)
t−h + γ1 lnC

(1)
t−h

+ δ22 ln
(

1 + J
(22)
t−h

)
+ δ5 ln

(
1 + J

(5)
t−h

)
+ δ1 ln

(
1 + J

(1)
t−h

)
+ εt .
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Forecasting Realized Volatility Separation of Continuous Components and Jump Components

Separation of Continuous and Jump Components

Table: HAR-RV vs HAR-RV-TCJ

tMAC tEFB

z/σ̂z MSE1 MSE2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

h = 1 0.122 0.409 0.375 0.094∗ 0.127 6.932 7.631 3.995 3.243 3.144 3.091 3.995 4.068 4.468 4.947
(2.610) (3.154) (3.693) (4.228)

h = 5 0.092 0.263 0.247 0.072 0.009 3.666 3.790 2.789 3.620 3.853 4.277 2.789 3.981 5.093 5.848
(2.050) (2.522) (2.975) (3.386)

h = 22 0.045 0.292 0.285 0.359∗ 0.343∗ 0.776 0.912 0.666 0.140 0.152 0.171 0.666 0.925 1.064 1.164
(1.645) (1.645) (2.092) (1.645) (4.701) (5.551) (6.413) (7.281)

For h = 1 we obtain d̂HAR−RV = 0.096, d̂HAR−RV−TCJ = 0.070 and
d̂diff = 0.094.

Tests uniformly confirm that HAR-RV-TCJ is superior.
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Forecasting Realized Volatility Predictive Ability of the VIX Index for Future Quadratic Variation

Predictive Ability of the VIX
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Chernov [2007], variance risk premium: VPt = lnVIX 2
t − lnRV 22

t+22.

Fractional cointegration: d̂ln VIX ≈ d̂ln RV (22) ≈ 0.8 and d̂VP ≈ 0.2, (cf.
Nielsen [2007], Bollerslev et al. [2013],...).

Inclusion of ln(VIX 2
t /12) in HAR-RV model: Becker et al. [2007],

Becker et al. [2009] and Busch et al. [2011].
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Forecasting Realized Volatility Predictive Ability of the VIX Index for Future Quadratic Variation

Predictive Ability of the VIX

Table: Predictive ability of the VIX for future RV and Jumps

tMAC teFB

z/σ̂z MSE1 MSE2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

HAR vs. HAR-VIX 0.135 0.292 0.269 0.219∗ 0.234∗ 2.968 3.032 2.494 0.929 1.038 1.188 2.494 2.754 2.985 2.849
(3.404) (4.064) (4.750) (5.388)

HAR-TCJ vs. HAR-TCJ-VIX 0.109 0.285 0.268 0.175∗ 0.138 2.421 2.455 2.097 1.397 1.610 1.892 2.097 2.503 2.889 2.724
(2.610) (3.154) (3.693) (4.228)

HAR-TCJ-L vs. HAR-TCJ-L-VIX 0.082 0.282 0.269 0.182∗ 0.163 1.784 1.786 1.819 0.889 1.016 1.192 1.819 2.153 2.430 2.317
(1.645) (1.645) (2.092) (1.645) (3.404) (4.064) (4.750) (5.388)

Long memory between 0.13 and 0.24.

Persistence in the loss differentials decreases for more complex
HAR-RV-type models.

Superior predictive ability of models including the VIX vanishes if
robust tests are used.
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Conclusion

Conclusion

Conventional DM test is invalidated by long memory in loss
differentials.

DM statistic can readily be extended by memory robust long-run
variance estimators.

Extended fixed-b approach of McElroy and Politis [2012] with MQS
kernel provides best size control.

In terms of power the Bartlett kernel is superior.

MAC suffers disproportionately under imprecise estimates of d .
However, the power of the MAC is superior.

Empirical findings highlight the importance of long-memory robust
tests for forecast comparisons.
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