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Motivation

» In the aftermath of the Great Recession, empirical DSGEs
were unprepared to deal with the new features of the data
(asymmetries, Zero Lower Bound, stochastic volatility);

» Non-linear solution techniques developed;

» Non-linear models estimation is still perceived as impractical
and computationally burdensome;

» The curse of dimensionality limited the diffusion of estimated
non-linear DSGE models in academia and in central banking; ;

> Need for alternative methodologies — Approximate Bayesian
Computation.;



This paper

Question
Is Approximate Bayesian Computation a valid (and easy-to-use)
methodology to estimate non-linear DSGE models?

Goal of the paper
| study the use of the Approximate Bayesian Computation, in order
to ease the estimation of non-linear DSGE models. | analyse the
performance of the ABC methods along two dimensions:

> the small sample properties of ABC estimators — Montecarlo

exercises to compare it with the Limited Information Method
(Kim, 2002);

» the curse of dimensionality — ABC-Sequential Montecarlo.



Results

» With small samples, Approximate Bayesian Computation
provides a better approximation of the full likelihood posterior
distribution with respect to the Limited Information (Kim,
2002);

» This result lies on how the distribution of the moments is
obtained:;

» ABC-SMC tackles the curse of dimensionality and provides a
good alternative to estimate non-linear DSGE models: an
application to a new-keynesian model with Zero Lower Bound;
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» The limited information methods: GMM, Hansen (1982) and
SMM, Duffie and Singletone (1993) Ruge Murcia (2010), BLI,
Kim (2002), Christiano at al. (2010), (2014), Indirect
Methods: ILI, Creel and Kristensen (2011);

» ABC techniques: Pritchard (2000), Beaumont et al. (2002),
Beaumont et al. (2010), Blum et al. (2010), Calvet and
Czellar (2012);

» The ZLB: Fernandez-Villaverde et al. (2012), Gust et al.
(2012), Guerrieri and lacoviello (2014);



What is the Approximate Bayesian Computation?

> It's a methodology developed in natural sciences,
epidemiology, population genetics;

» [t's a limited information method, where inference is based on
matching moments;

» The moments are computed by simulating the model and
taking into account the size of the sample (differently from
GMM-style estimators);

» In order to simulate the model and obtain the simulated
moments, vectors of parameters are drawn from the prior;

» The prior is updated by an accept/reject algorithm based on
the distance bewteen the simulated moments and observed
moments;



The algorithm

1 Compute the moments (i.e. autocovariances) of the observed
sample;

2 Draw from the prior distribution and simulate the model
conditional on the vector of parameters drawn: each
simulation has the size of the observed sample;

3 Compute the moments of the simulated sample (i.e.
simulated autocovariances);

4 Compute the Euclidean distance between the vector of
simulated moments and of the observed moments;

5 Accept and store the vector of parameters if the Euclidean
distance is below a small threshold, go back to step 2;



The basic idea of ABC
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A comparison with the Limited Information Method (BLI)

» Bayesian version of the GMM-style estimators;
» By the CLT, the likelihood of the moments is:
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where 4 is the sample moment, ~(0) is the analytical
moment, V is the variance covariance matrix.

Remark
ABC relies on the simulated distribution of the moments, the BLI
relies on their asymptotic distribution.



Another helicopter tour

Figure : Distribution of the sample autocovariance for an AR(1) process with ¢ = 0.50
for different sample sizes: from 50 to 2000 observations. The pink plane represents
the population autocovariance. When the sample is small, the distribution of the
moment is not normal and is not centred around the population moment. This is a
comparative advantage of ABC with respect to the GMM-style estimators.



Comparison with the BLI: Montecarlo experiments

» Two Montecarlo experiments: on the AR(1) and on a RBC
model;

> A Bayesian perspective;

» First criterion: RMSE with respect to the Full likelihood
posterior mean;

» Second criterion: Overlapping Ratio of the 90% credible
intervals of the Approximate posterior distribution with the
full likelihood posterior distribution;



A Montecarlo experiment: the AR(1)

» We estimate the autocorrelation of an AR(1) process

Yt = Qyr—1 + € (2)
with
er ~ N(0,1) (3)
» Different sample sizes: T = [100, 300, 1000]
» Autocorrelations ¢ = [0.10,0.20, ...,0.90, 0.95,0.99]
» Limited information: Autocovariance

» Prior:
P(0) ~ U[0,1] (4)

» 1000 runs;



Results: RMSE for 100 Obs.
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Figure : RMSE of the Montecarlo experiment: AR(1) process. Comparison among the
ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=100. Different
autocorrelations on the horizontal axis. With small samples, ABC estimators
outperform BLI estimator in terms of RMSE with respect to the full likelihood
posterior mean. The larger the persistence of the process, the better the relative
performance of ABC.



Results: OR for 100 Obs.
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Figure : Overlapping Ratios of the Montecarlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=100. Different autocorrelations on the horizontal axis. Overlapping ratio is
generally larger for ABC than for BLI posteriors. The larger the persistence of the
process, the better the relative performance of ABC.



ABC and DSGE

» ABC can be applied to the estimation of non-linear
macroeconomic models (DSGE with ZLB, stochastic volatility

and so forth);

» ABC-rejection subject to the curse of dimensionality;
ABC-SMC (Sisson, 2007)

» Initial ABC-rejection

» In subsequent iterations, new parameters are drawn from the
accepted parameters of the previous iteration;

» Until convergence to the target distribution;

» Perturbation step, Kernel weighting and Resampling step, as in
standard SMC.



An application to the ZLB

v

ABC-SMC is applied to the estimate of a model with an
occasionally binding ZLB;

v

The observables: income, consumption, wages, hours,
inflation interest rate

v

Moments: variances, covariances, autocovariances;

v

4 subsamples:

Baseline: 1966Q1-2014Q3;

Great Moderation + ZLB: 1983Q1-2014Q3;
Great Moderation: 1983Q1-2007Q4;

The Great Volatility 1I: 2001Q1-2014Q3;
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ABC-SMC: iterated approximate posteriors

[t
[t
t
t
t
&
[t
t

Figure : Approximate posterior distributions obtained for the first 10 iterations of the
ABC-SMC for the parameter py in on of the estimation exercise. The sample spans
from 1983Q1 to 2014Q3. The ZLB binds for approximately one fifth of the sample.



Impulse responses for 4 different sub-samples.
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Figure : 2-standard deviation Impulse responses of preference shock for 4 different
sub-samples: Baseline (SW, 1966Q1-2014Q3), Great Moderation (GM,
1983Q3-2008Q3), Great Moderation+Zero Lower Bound (1983Q1-2014Q3), Great
Volatility-1l (GV, 2001Q1-2014Q3). ABC-SMC is performed using covariances and
autocovariances of income, wages, consumption, investments, interest rates, inflation.



Conclusion

» With small sample, Approximate Bayesian Computation
outperforms the Bayesian Limited Information method, in
terms of approximating the full likelihood posterior;

» ABC can be adopted to estimate medium-scale DSGE models
with occasionally binding constraints;

» ABC-SMC presents several advantages to tackle
multi-modality, numerical efficiency, curse of dimensionality.

» Including the period of the ZLB affects the estimated
probability of hitting the ZLB of the model.



Comparison with the BLI: Montecarlo experiments

» | run two Montecarlo experiments: on the AR(1) and on a
RBC model.

» First criterion: RMSE with respect to the Full likelihood
posterior mean;

» Second criterion: Overlapping Ratio of the 90% credible
intervals of the Approximate posterior distribution with the
full likelihood posterior distribution;
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Overlapping Ratio

Comparison 4

Figure : Full likelihood posterior distribution (Green), BLI Posterior Distribution (Blu),
Prior Ditribution (Red), The 90% Credible Intervalsa are defined by the dash-dotted
lines.



ABC-SMC: Drawing and accept/reject

» If t =1, draw the swarm of particles {01605...0n} from the
importance distribution p.
» If t > 1, sample the new swarm {9;-*7";_1} i = 1N with weights

N
{ ,-*;"_1} ad perturb each particle according to a
’ '_1

=
transition kernel 0 ~ K;(6]6*)

Simulate the model to obtain x** conditional on each particle
2 if p(S(x**, S(x0)) < €+ accept the particle, otherwise reject.

v

v

If accepted, assign the particle a weight;



ABC-SMC: Weighting and resampling

St =1, Wiy = 20
> Ift>1,
VV/,f = N 7T(0’.1t)
>jm1 We1(0e-1)Ke(0e,il0e-1,)
where 7(#) is the prior distribution for 6.

» Normalize the weights such that Z,N:1 Wei=1.
» Compute the Effective Sample Size (ESS):

N

ESS = [Z(Wt,,-f)]

i=1

If the ESS is below Nl, resample with replacement the

(8)

particles according to the weights {I/\/,t}IN:1 and obtain the

new population with new weights W; ; = %
» If t < T, return to (2).



