
Forecasting Economic Activity Using a Neural 
Network in Uncertain Times: Monte Carlo 
Evidence and Application to the German GDP
 
Oliver Holtemöller, Boris Kozyrev

Discussion Papers No. 6
March 2024



Authors
 
Oliver Holtemöller
Halle Institute for Economic Research (IWH) – 
Member of the Leibniz Association,
Department of Macroeconomics, and 
Martin Luther University Halle-Wittenberg
E-mail: oliver.holtemoeller@iwh-halle.de
Tel +49 345 7753 800

Boris Kozyrev
Corresponding author
Halle Institute for Economic Research (IWH) –  
Member of the Leibniz Association, 
Department of Macroeconomics
E-mail: boris.kozyrev@iwh-halle.de
Tel +49 345 7753 865

The responsibility for discussion papers lies 
solely with the individual authors. The views 
expressed herein do not necessarily represent 
those of IWH. The papers represent prelimi-
nary work and are circulated to encourage 
discussion with the authors. Citation of the 
discussion papers should account for their 
provisional character; a revised version may 
be available directly from the authors. 

Comments and suggestions on the methods 
and results presented are welcome. 

IWH Discussion Papers are indexed in 
RePEc-EconPapers and in ECONIS.

Editor

Halle Institute for Economic Research (IWH) – 
Member of the Leibniz Association 
 
Address: Kleine Maerkerstrasse 8 
D-06108 Halle (Saale), Germany 
Postal Address: P.O. Box 11 03 61 
D-06017 Halle (Saale), Germany 
 
Tel +49 345 7753 60 
Fax +49 345 7753 820 
 
www.iwh-halle.de

ISSN 2194-2188

IWH Discussion Papers No. 6/2024II

mailto:boris.kozyrev%40iwh-halle.de?subject=


In this study, we analyzed the forecasting and nowcasting performance of a ge-
neralized regression neural network (GRNN). We provide evidence from Monte 
Carlo simulations for the relative forecast performance of GRNN depending on 
the data-generating process. We show that GRNN outperforms an autoregres-
sive benchmark model in many practically relevant cases. Then, we applied 
GRNN to forecast quarterly German GDP growth by extending univariate GRNN 
to multivariate and mixed-frequency settings. We could distinguish between  
“normal” times and situations where the time-series behavior is very different from  
“normal” times such as during the COVID-19 recession and recovery. GRNN was 
superior in terms of root mean forecast errors compared to an autoregressive 
model and to more sophisticated approaches such as dynamic factor models if 
applied appropriately.
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1 Introduction

A timely assessment of the current economic development and the short-term economic outlook is

essential for many decisions in companies, governments, public institutions and private households.

Accordingly, many approaches for nowcasting and forecasting economic activity exist. An important

indicator of economic activity is gross domestic product (GDP).

However, standard forecasting models may yield unreliable estimates during recessions or crises.

The most recent example is the COVID-19 crisis. The pandemic was an unprecedented shock never

observed before in modern history (Barbaglia et al., 2022). Standard models have failed to estimate its

impact on the world economy in real time. We propose a nowcasting method based on a simple neural

network (NN) called a Generalized Regression Neural Network (GRNN). GRNN has a significant

advantage over more sophisticated NN specifications: it is relatively intuitive. Decision makers who

use GRNN results can understand how forecasts are derived.

GRNN is a neural-network implementation of the non-parametric Nadaraya-Watson Gaussian

Kernel Regression estimator (Nadaraya, 1964; Watson, 1964). Therefore, it is assumed that advantages

from both NN and non-parametric approaches will be shared. For instance, no assumptions of a specific

data distribution or a specific functional relationship between predictors and dependent variables are

required. Moreover, non-parametric methods are less sensitive to outliers than parametric approaches.

Mart́ınez et al. (2022) proposed a new method of feature selection to produce forecasts using GRNN,

confirming that the obtained predictions can compete with different – often less tractable – NN

architectures.

In this study, we applied the GRNN framework to economic settings. We systematically investi-

gated the GRNN performance depending on the data-generating process using Monte Carlo simula-

tions. We argue that a GRNN-based approach has a higher forecasting power than standard parametric

frameworks. We conducted Monte Carlo simulations for various data-generating processes (DGPs),

in which predictions obtained from the GRNN model are compared to an autoregressive process of

order 1, AR(1), as a benchmark. In addition, we compared GRNN forecasting performance to auto-

matically fitted autoregressive moving-average (ARMA) models. First, we simulated stationary linear

univariate time series, such as AR(1), AR(4), ARMA(3,3). We demonstrate that GRNN surpasses

the benchmark in forecasting performance in some practically relevant scenarios. Moreover, upon

extending the simulation procedure to nonlinear settings, we observed that GRNN may be superior

to the selected benchmark and estimated ARMA models.

Finally, we performed a one-step-ahead pseudo-out-of-sample forecast to predict German GDP

and show how to integrate indicators, such as industrial production, into the approach. Our empirical

results suggest that GRNN can be helpful for short-term forecasting. If applied appropriately, our

method can be particularly beneficial during uncertain times such as the COVID-19 crisis.
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The structure of the paper is as follows: Section 2 explains the GRNN approach. In section 3, we

present the Monte Carlo simulations. Section 4 contains the application of the approach to forecasting

German GDP growth. Conclusions are provided in section 5.

2 Generalized Regression Neural Network (GRNN)

2.1 General Approach

A generalized regression neural network (GRNN) is a variation of a radial basis NN, first proposed by

Specht et al. (1991). GRNN can be graphically represented using nodes and layers, see, for example,

Sumiyati and Warsito (2020). It is a non-parametric model that can be applied to classification or

(time-series) regressions. This model assumes that a prediction can be obtained as a weighted average

of all previous values based on their proximity to its last behavior, which allows a very intuitive

interpretation. GRNN is a version of the Nadaraya-Watson Gaussian Kernel Regression estimator

(see Appendix A) defined in terms of a NN (Ahmed et al., 2010).

GRNN has several advantages over other algorithms. First, GRNN is non-parametric. No as-

sumptions regarding the functional form are required. Unlike the ARIMA approach, a global model

in which a chosen relationship is extrapolated to all observations, GRNN is a local estimator (Gheyas

and Smith, 2009). Moreover, only two parameters must be defined: the number of lags (k) and a

smoothing parameter (σ).

More formally, suppose both a training set consisting of n training patterns (vectors) {x1, x2,. . . ,

xn} and corresponding targets {y1, y2,. . . ,yn} are given. The output for an input pattern x is estimated

based on the closeness of x to the training patterns xi. A corresponding weight wi could be expressed

as follows:

wi =
exp(− ||x−xi||2

2σ2 )∑n
l=1 exp(−

||x−xl||2
2σ2 )

, (1)

where || · || is the Euclidian distance, and σ is a smoothing parameter. The forecast is a weighted sum

of training target outputs:

ŷ =

n∑
i=1

wiyi, (2)

where yi is the target output for training data xi.

This approach can also be applied to time series data. In a univariate case, previously ob-

served values may be used to determine future behavior of a given time series. First, a train-

ing set of k-tuples of sequential historical values is created. The corresponding training target is

the following observation. Then, the last k observations are used as an input pattern. To illus-

trate this idea, Figure 1 depicts the dynamics of the German GDP’s quarter-over-quarter (q-o-q)

growth rate between the first quarter of 1991 and the third quarter of 2003. In this example,

we have 50 observations and k = 4, indicating that we have a training set containing 46 k-tuples:
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Figure 1: GRNN time series framework

S = {(x1, x2, x3, x4), (x2, x3, x4, x5), ..., (x46, x47, x48, x49)}. For example, let us take the first entity of

S, namely S1 = (x1, x2, x3, x4). In this case, its corresponding target would be the next observed value

x5. The same holds for every other element in Sk. An input pattern consits of the last k observations,

i.e., x = (x47, x48, x49, x50). To produce a forecast, we calculated the Euclidian distance for each

element in Sk and weights were assigned to every training target value according to (1). Moreover, a

weighted average was taken as in (2). Figure 1 shows the training pattern, its target value, the input

target, and a one-step-ahead forecast. This training pattern was chosen because it was the closest to

the last observed values (input pattern) according to the Euclidian distance. This implies that the

highlighted target value has the largest weight, wi.

Several methods for determining k and σ have been proposed, including K-folded cross-validation

(Yan, 2012). We relied on Mart́ınez et al. (2022), who suggested a fast algorithm to produce highly

accurate forecasts. The number of lags could be determined using a heuristic approach:

1. If a time series is seasonal, then k = s, where s is the length of the seasonal period.

2. If a time series is not seasonal, k = p, where p is the number of significant lags of the partial

autocorrelation function (PACF).

3. If both conditions are not met, k = 5.

σ is estimated by minimizing the forecasting error on a validation set, which is formed by the last h

observations of a given time series, where h is the forecasting horizon.
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To predict future values of non-stationary or trend-stationary time series, we modified the basic

approach. GRNN time series forecasting is based on detecting patterns in the past. This means that

this model cannot predict an observation that is out of range of previous observations. The following

additive data transformation is proposed to capture trend-stationarity:

1. Both a training pattern vector and the corresponding target value(s) are modified by subtracting

the mean of the former. Take the previous example, illustrated in Figure 1. Each observation

in S1 = (x1, x2, x3, x4) is demeaned by x̄1 =
∑4

i=1 xi

4 . Thus, we can obtain S̃1 = (x1 − x̄1, x2 −

x̄1, x3 − x̄1, x4 − x̄1). The initial training target value x5 is similarly modified as x̃5 = x5 − x̄1.

The input pattern is also demeaned to compute the Euclidian distance, i.e., x̃ = (x47− x̄1, x48−

x̄1, x49− x̄1, x50− x̄1). This assures that the distance is unaffected by the transformation. Then,

a weight w5 is assigned to x̃5. This procedure applies to each entity in Sk, each corresponding

target value, and the input pattern.

2. A prediction is obtained using modified data. In our case, the prediction is a weighted sum of

transformed target values, namely ˆ̃xt+1 =
∑50

t=5wtx̃t

3. The mean of the input vector is added to obtain the actual forecast. In other words, the final

prediction is x̂t+1 =
∑50

t=5wtx̃t + x̄, where x̄ =
∑50

i=47 xi

4 is the mean of input vector x.

If a time series is characterized by an exponential trend, instead of demeaning, we divide by the

mean of each k-tuple in Sk (multiplicative transformation). The transformed weighted average is

multiplied by the mean value of input vector x to retrieve a final forecast.

Finally, we use an iterative approach throughout the entire study: If one wants to forecast h-

step-ahead, where h ≥ 2, first, a one-step-ahead forecast must be carried out. Then, the forecast is

treated as an observation to produce another one-step-ahead forecast. In other words, to produce a

h-step-ahead forecast, a one-step-ahead forecast is iteratively repeated h times.

2.2 Extension to the Multivariate Case and Mixed Frequencies

Statistical offices usually report GDP at a quarterly frequency. Many economic indicators containing

information for estimating current and future GDP are available at higher frequencies. Therefore,

several approaches have been developed that can combine various frequencies, such as Dynamic Factor

Models (DFM) (Bańbura and Rünstler, 2011), Mixed-Data Sampling (MIDAS), and Mixed-frequency

Vector Autoregressive Models (MF-VAR) (Kuzin et al., 2011). We need to adjust the initial approach

to exploit the possibility of using GRNN to forecast or nowcast GDP.

Although it seems possible to naturally extend the GRNN approach to multivariate settings,

as proposed in Mart́ınez et al. (2022), we suggest an alternative method for adjusting GRNN for

forecasting. First, we aggregated monthly data to quarterly frequency to match the GDP reporting
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schedule. Each aggregated time series is then divided by the corresponding GDP value, creating a

new dataset relative to GDP. In the next step, GRNN is applied to separately predict the ratio of

each time series relative to GDP, considering that these ratios may be non-stationary by using data

transformations (multiplicative and additive). Finally, a set of individual forecasts is obtained by

updating each predicted ratio with observed and forecast values for a given time series, and a median

value is calculated to produce the final estimation.

3 Monte Carlo Simulations

We studied the forecast precision of GRNN time-series predictions depending on various DGPs using

Monte Carlo simulations. We assumed that each simulated series y is a monthly time series, and we

aimed to predict the next 12 months. AR(1) was selected as a benchmark, i.e., we compare GRNN

forecast precision to its AR(1) counterpart when the true DGP is unknown.

3.1 Forecasting Algorithm

We consideredN samples of n observations of a target series yi,t, i = 1 . . . N , t = 1 . . . n, generated from

a specific DGP. Each sample was divided into two separate observation groups, such that n = I + P .

I = n − 12 in-sample values were exploited to estimate each model, whereas P = 12 pseudo-out-of-

sample observations are used to evaluate forecast precision. The models’ forecasting performance is

evaluated by using the mean absolute forecast error (MAFE) and the root mean squared forecast

error (RMSFE). MAFE for forecast horizon h can be expressed as follows:

MAFEh =

∑N
i=1 |yi,t+h − ŷi,t+h|t|

N
, (3)

where h is the forecast horizon, ŷi,t+h|t is a prediction of yi,t+h based on available information at time

t, and yi,t+h is the actual value at time t+ h. RMSFE for forecast horizon h is defined as:

RMSFEh =

√∑N
i=1(yi,t+h − ŷi,t+h|t)2

N
. (4)

Additionally, we define relative MAFE and relative RMSFE, denoted rMAFE and rRMSFE,

which aid the assessment of the GRNN forecasting performance relative to the AR(1) benchmark:

rMAFEh =

∑N
i=1 |yi,t+h − ŷGRNN

i,t+h|t |∑N
i=1 |yi,t+h − ŷ

AR(1)
i,t+h|t|

=
MAFEGRNN

h

MAFE
AR(1)
h

rRMSFEh =

√∑N
i=1(yi,t+h − ŷGRNN

i,t+h|t )
2√∑N

i=1(yi,t+h − ŷ
AR(1)
i,t+h|t)

2
=

RMSFEGRNN
h

RMSFE
AR(1)
h

,

(5)

We chose N = 10000 and considered sample lengths n ∈ {112, 212, 412, 1012}. GRNN should

perform better after ample observations are made. However, macroeconomic data are typically limited.

Therefore we analyzed small, medium and large sample sizes.
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As DGPs we considered AR(1), AR(4), ARMA(3, 3), V AR(2), and TAR(2). We start from the

AR(1), our benchmark. We expected the AR(1) to outperform GRNN if AR(1) is the true DGP. To

analyze lag misspecification, we added AR(4) as another GDP to our Monte Carlo exercise. Addi-

tionally, ARMA(3, 3) was included to study the importance of adding a moving-average component.

A bivariate Vector Autoregressive Process (VAR) of order 2, denoted V AR(2), was used to observe

how missing variable(s) influence the relative forecasting performance. Finally, using a threshold au-

toregressive process (TAR), we introduced nonlinearity. We will explain the choice of parameters in

the corresponding subsections.

Overall, we used the following algorithm:

1. Simulate N = 10000 samples of n ∈ {62, 112, 212, 412, 1012} observations using different DGPs

∈ {AR(1), AR(4), ARMA(3, 3), V AR(2), TAR(2)}.

2. Use I = n− 12 observations to estimate pre-selected models, namely AR(1) and GRNN with no

transformation;

3. The last P = 12 observations are used to conduct the pseudo-out-of-sample forecast.

4. Compute MAFEh and RMSFEh ∀h = 1, ..., 12

5. Compute rRMAFEh and rRMSFEh ∀h = 1, ..., 12

3.2 Simulations Results

In this subsection, we describe our main findings from the Monte Carlo simulations. First, each

DGP is discussed individually, including model specification and relative forecasting performance. We

found out that rRMAFE and rRMSFE yielded almost identical results. Therefore, we report only

the rRMSFE values here. The forecasting performance within each specification was analyzed with

respect to n and h. A potential trade-off between the computational time and forecasting precision is

also discussed. As an additional comparison between GRNN and parametric approaches, we studied

how fitting an ARMA model based on information criteria performs.

AR(1)

The first DGP selected for the Monte Carlo simulation was AR(1). Even though this specification is

straightforward, the obtained forecasts are typically precise for many different time series (Marcellino

et al., 2006). More formally, AR(1) could be expressed as follows:

yt = αyt−1 + ϵt, (6)

where α is an AR(1) coefficient, and ϵt is white noise. The persistence of an AR(1) process depends

on α. For example, if |α| is close to 0, the observed time series may resemble white noise. Meanwhile,
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Figure 2: Case 1.1: AR(1), α = 0.9, no trans-
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Figure 3: Case 1.1: AR(1), α = 0.9, additive

transformation

higher absolute values of α indicate a more significant contribution of a previous value of a time

series compared to an error term. Therefore, to capture this phenomenon, we choose values of α ∈

{0.9, 0.5, 0.2}. The error terms in every simulation were i.i.d. with ϵt ∼ N(0, 1).

There are different methods to estimate AR(1) processes, such as ordinary least squares (OLS),

maximum likelihood (ML) estimation, the conditional sum of squares (CSS), and Yule-Walker equa-

tions based on the method of moments. In this study, we estimated the time series using CSS. As

expected, the simulation results show that for any given number of observations n, and for any fore-

casting horizon h, AR(1) is superior to GRNN in terms of forecast precision.1

Case 1.1: α = 0.9. In Figure 2, rRMSFE for AR(1) with α = 0.9 is presented. In general, a slow

decay indicating an inverse proportionality between the forecast horizon and rRMSFE was observed.

For short-term forecasting, the number of observations plays a more significant role, i.e., the more

data is available, the lower rRMSFE. However, this difference is disappearing for longer horizons.

Recall that for any stationary ARMA process, when the forecasting horizon tends to infinity, its

point forecast tends to the mean. In other words, we expect rRMSFE to tend to one, implying

that GRNN will adapt its weights accordingly to produce a mean forecast. However, the asymptotic

properties of the Nadaraya-Watson univariate time series estimator are difficult to postulate because

they depend on different assumptions. These so-called mixing conditions are challenging to test in

practice (Heiler, 1999). Moreover, macroeconomic time series are often too short to rely on asymptotic

results. Therefore, it is important to study the forecast properties empirically. In Figure 3, rRMSFE

1Accordingly, we did not compare GRNN to forecasts based on the estimated true DGP for the remaining simulations.
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Figure 5: rRMSFE for AR(1), α = 0.2

for AR(1) with α = 0.9 with an additive data transformation is presented. In this case, additive

data transformation is redundant because we have a stationary time series. However, due to high

persistence, we found it beneficial to compare the forecasting performance of GRNN with additive

transformation to GRNN with no transformation. For short-term horizons, GRNN with additive

transformation outperforms its counterpart.2 However, the rRMSFE increases in h unlike in the

case without transformation. Moreover, the number of observations n plays an important role. The

less data we observed, the steeper the slope of rRMSFE. If the AR(1) process is highly persistent,

the effect of applying data transformation on forecasting performance depends on h.

Case 1.2: α = 0.5. In Figure 4, rRMSFE for AR(1) with α = 0.5 is shown. For this case, the

values of rRMSFE are lower compared to the previous case with a large α. Thus, on average, GRNN

performs better if the autocorrelation value is farther from one. A similar slow decay of rRMSFE was

observed as in Figure 2.3 Furthermore, rRMSFE decreases if the number of observations n increases.

Case 1.3: α = 0.2. This case is similar to case 1.2, see Figure 5. However, regardless of sample

size n, GRNN performs almost as accurately as AR(1). When the persistence of an AR(1) process is

relatively low, the forecast qualities of GRNN and AR(1) are comparable and the role of n becomes

less critical.

2This was the only DGP used in our Monte Carlo simulations for which this held.
3Data transformation is redundant – rRMSFE of GRNN with no data modification is lower for every h compared

to the same model with transformation.
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Figure 7: Case 2.2: AR(4)

AR(4)

One possible way to naturally extend the AR(1) model is to increase the number of lags, thus shifting

towards AR(p), where p > 1. Using an AR(p), we aimed to study the potential lag misspecification.

As a baseline specification, we selected AR(4). Because we focused on a stationary univariate time

series, we had to define an AR(4) that satisfies the stationarity condition: the roots of the AR(p)

polynomial must be outside the unit circle. We selected two separate cases.

Case 2.1: AR(4) First, we considered the following AR(4):

yt = 0.2yt−1 − 0.2yt−2 + 0.5yt−3 − 0.6yt−4 + ϵt, (7)

where ϵt is white noise. This specification allowed us to examine a lag misspecification issue per se

and consider the importance of higher-order lags while producing a forecast. As shown, the relative

weights of yt−3 and yt−4 are larger than those of yt−1 and yt−2. We chose these parameters on purpose.

Supposedly, AR(1) fails to detect this relationship, whereas a more flexible GRNN should adjust its

weights accordingly. Imagine, however, a different scenario when the AR(1) coefficient is dominant,

forcing the entire DGP to mimic an AR(1). Under these settings, the Monte Carlo results may be

indistinguishable from the previous case, see case 2.2.

In Figure 6, rRMSFE for the baseline AR(4), equation (7), is illustrated. As expected, GRNN

outperformed AR(1) for any given time horizon. The non-parametric approach can capture a more

complicated DGP, regardless of the amount of observations. On average, rRMSFE is less than 0.8

for one-step-ahead forecasting, indicating that GRNN predicts 20% more accurately. Similar to the

AR(1) case, rRMSFE tends to one as the forecasting horizon h increases, implying that for a long-
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term prediction, both AR(1) and GRNN have the same forecasting power because both predict the

unconditional mean for longer forecast horizons. The speed of performance convergence depends on

the sample size. When more observations are available, GRNN is more precise than AR(1). However,

even if the number of observations is low (50 or 100), GRNN performs better than a wrong parametric

time series model.

Case 2.2: AR(4) Now, we inspected the case in which the relative weights of yt−3 and yt−4 were

significantly lower than those of yt−1 and yt−2. To be more specific, let us define the following model:

yt = 0.8yt−1 − 0.3yt−2 + 0.4yt−4 + ϵt, (8)

where ϵt is white noise.

In Figure 7, rRMSFE based on the DGP defined in equation (8) is shown. The behavior of

rRMSFE is notably different from the previous case. For h = 1, AR(1) outperforms GRNN for any

number of observations. However, when h ≥ 2, rRMSFE falls below one again. Thus, even when

the previous observation yt−1 contributes the most, GRNN still outperforms AR(1) for some longer

forecasting horizons. Remarkably, n influences the relative forecasting performance. When more data

are observed, the better GRNN can capture an AR(4) process with a dominating AR(1) component.

Case 3.1: ARMA(3, 3).

We extended the AR(p) model by adding moving-average components. The ARMA(p, q) model

became popular after Box and Jenkins proposed a reasonable way to determine autoregressive and

moving average orders. This approach has been predominant in parametric time-series analysis for

decades. However, as argued in Hannan and Deistler (2012), this approach performs well only for

low-order polynomials for p and q (three or less). Considering this, we found it fruitful to examine

the ARMA(3, 3) case. ARMA(3, 3) is highly volatile, even though it is stationary upon selecting

parameters. A handful of significant autoregressive terms alongside the moving-average components

make estimating and conducting a prolific forecast analysis cumbersome. This specification has been

applied in the literature, to examine future numbers of monthly active worldwide Facebook and Twitter

users (Al-Haija et al., 2019), for example.

As a benchmark, the following ARMA(3, 3) was used:

yt = 0.8yt−1 − 0.3yt−2 − 0.5yt−3 − 0.4ϵt−1 + 0.2ϵt−2 + 0.1ϵt−3 + ϵt, (9)

where ϵt is a white noise. In Figure 8, rRMSFE for a baseline ARMA(3,3) is illustrated. GRNN

outperforms AR(1) as expected, yielding lower rRMSFE values for all values of n and h. Even

with few observations, GRNN still produces better predictions than the benchmark. Based on our

Monte Carlo simulation results, one may expect that GRNN copes better than AR(1) when a more

sophisticated ARMA(p, q) is introduced.
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Case 4.1: V AR(2)

Vector Autoregressive Models of order p, denoted as V AR(p) are extensively used in macroeconomic

forecasting. V AR(p) specifications imply that the set of current observations of given indicators can

be explained by corresponding past values of the same variables involved in the analysis (Lütkepohl,

2013).

For our Monte Carlo simulations, we choose the following bivariate specification of a V AR(2):

y1,t = 0.2y1,t−1 + 0.1y2,t−1 − 0.4y1,t−2 + 0.3y2,t−2 + ϵ1,t (10)

y2,t = −0.3y1,t−1 + 0.4y2,t−1 + 0.2y1,t−2 − 0.3y2,t−2 + ϵ2,t, (11)

where ϵ1,t and ϵ2,t are i.i.d. with ϵk,t ∼ N(0, 1), k = 1, 2.

In Figure 9, the rRMSFE values for V AR(2) are presented. GRNN is superior to AR(1) for

short-term forecasting when the true DGP is a V AR(2). This indicates that GRNN, even with a

relatively small sample size, is able to cope better with the missing variable(s) challenge better than

an AR(1).

Case 5.1: SETAR(2, 2)

The threshold autoregressive model (TAR) is another extension of the AR(p) model. In the TAR

framework, a regime-switching behavior is introduced, which makes TAR models piecewise linear.

More formally, thresholds split one-dimensional Euclidean space into several subspaces (regimes),

with a separate AR(1) in each of those regimes (Gibson and Nur, 2011). This division implies that

TAR models are nonlinear but stay linear locally.

The simplest class of TAR models is the self exciting threshold autoregressive model of orders p
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Figure 9: Case 4.1: V AR(2)

and q, denoted SETAR(p, q), where p is the number of regimes, and q is the order of the autoregressive

part. SETAR implies that the regime depends on lagged values of the dependent variable.

For our Monte Carlo simulations, we chose a SETAR(2, 2) specification proposed in Li and Tong

(2016):

yt =


1− 0.3yt−1 + 0.5yt−2 + ϵt, if yt−2 ≤ 0.2

−1 + 0.6yt−1 − 0.3yt−2 + ϵt, if yt−2 > 0.2,

(12)

where ϵt is i.i.d. with ϵt ∼ N(0, 1).

In Figure 10, the rRMSFE values for SETAR(2, 2) are presented. When nonlinearity is intro-

duced, GRNN is superior to AR(1) for short-term forecasting. Moreover, the relative forecasting

performance of GRNN for h ≤ 2 is declines with respect to n. When the number of observations is

low, GRNN produces a smaller value of rRMSFE. This pattern is similar to the V AR(2) case. Thus,

GRNN can capture a nonlinearity even with a small sample by adjusting its weighting.

Case 6.1: Logistic Map

Additionally, we applied the same Monte Carlo simulation to another class of nonlinear univariate

time series, namely a logistic map. Formally, the logistic map could be represented as:

yt = ryt−1(1− yt−1) (13)

The behavior of this nonlinear DGP critically depends on r. We chose r = 4, as under this condition,

observed values eventually fall within the interval [0, 1]. In Figure 11, the rRMSFE values are

compared to AR(1). As in the previous case of SETAR(2, 2), GRNN tends to outperform AR(1) for

short-term horizons once nonlinearity is introduced.
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Figure 10: Case 5.1: SETAR(2, 2)

Discussion of Simulation Results

In this subsection, some broader results are addressed. First, we compare the forecasting performance

across different DGPs. Figure 12 presents the values of rRMSFE for selected DGPs with fixed

n = 200. Almost all rRMSFE curves are either close to one or fall below this threshold. For n = 200,

on average, GRNN produces better or at least comparable predictions to AR(1) for every forecasting

horizon h except if the true DGP is an AR(1). This observation is important because it signals that

GRNN – a less restrictive algorithm – may serve as a benchmark instead of AR(1) in many empirical

studies.

It is worth noting, that there might be a trade-off between computational time and forecast pre-

cision. For example, the neural-network specification used in Richardson et al. (2018) takes approxi-

mately 31 minutes to produce a forecast. However, time-series GRNN is significantly faster than other

NN specifications. The average time to fit and predict with GRNN ranges from 0.4-0.6 seconds. For

comparison, implementing the same procedure using an ARMA model takes 0.1-0.3 seconds. In other

words, an appropriate approach for finding σ and the number of lags allows us to estimate time-series

GRNN almost as fast as classic parametric frameworks.

3.3 Parametric vs Nonparametric Approach

Suppose a true DGP is unknown, and one carries out a parametric time series analysis. In that

case, various techniques are used to fit an ARMA model (among others, different information criteria

and inspection of autocovariance and partial autocovariance). If the process is indeed an AR(4) or

ARMA(3, 3), it is unlikely that the estimated model ends up being AR(1). We address the issue in

this subsection.
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First, comparing different approaches to AR(1) is not as unfair as it may seem. AR(1) is extensively

used as a general benchmark for various forecast exercises. We show that, under different settings,

GRNN – without assuming any functional form – may serve as a more flexible approach for comparison.

Even if a sample size is relatively small, GRNN is a valid approach, outperforming the more common

AR(1) model.

We intentionally did not collate a non-parametric approach to a true DGP model. Once the true

DGP is available, there is no need to use other, even sophisticated, approaches because the true model

always yields better forecasts.

However, the true underlying process could rarely be detected. Thus, a common approach is to

apply model selection criteria. We applied the ARMA fitting procedure to the same samples and

compare forecast precision with GRNN using the same metric, rRMSFE, as defined in (4). The

results show that ARMA, in most cases, dominates GRNN (Figure 13). However, we highlight two

potential problems when dealing with automatically fitted ARMA models. Because we simulated data

from well-defined DGPs and knew the exact functional forms, it is possible to empirically test how well

generated data could be fitted to a parametric setting using existing frameworks. For our purposes,

we used an information criteria approach, i.e., the selection was based on Akaike Information Criteria
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Figure 12: Simulation results for n = 200 for different DGPs

DGPs n = 100 n = 200 n = 400 n = 1000

AR(1),case 1.1 0.7364 0.5966 0.5302 0.4602

AR(1), case 1.2 0.5176 0.4789 0.4959 0.5039

AR(1), case 1.3 0.4899 0.3051 0.2869 0.3758

AR(4), case 2.1 0.5365 0.4896 0.4902 0.4804

Table 1: Share of correctly estimated samples using ARMA fitting

(AIC) values (max 5 lags). The same samples of AR(1) and AR(4) (case 2.1), on which we performed

our Monte Carlo simulations, were chosen. Table 1 presents shares of correctly estimated models

given the true DGPs. Even though a parametric approach seems to be rather restrictive for almost

all DGPs, rRMSFE of the fitted ARMA model is superior to GRNN estimation. Table 1 shows that

parametric ARMA estimations often cannot detect the true model. In the best scenario of AR(1) with

high persistence, approximately 75% of simulated samples were correctly detected. All other DGPs

had a lower match. Real-world data is barely distributed according to well-defined parametric models.

In a given situation, an incorrectly-specified ARMA model may yield unreliable forecasts. Thus, we

conclude that GRNN – as a less restrictive model – may indeed compete with parametric frameworks

when dealing with univariate time series.

Second, ARMA fitting cannot correctly capture nonlinear time series, at least for short horizons,
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Figure 13: Simulation results for n = 200 for different DGPs compared to fitted ARMA

as case 6.1 (logistic map) illustrates. Moreover, a similar pattern of rRMSFE values was observed

in all figures. This can be attributed to the fact that ARMA fitting procedure often assumes that

the DGP follows AR(1), thus failing to detect existing nonlinearity. However, GRNN can capture the

nontrivial behaviour of given logistic map samples, providing superior short-term forecasts.

4 Nowcasting the German GDP

4.1 Empirical Strategy

To obtain a GDP nowcast (both level value and growth rate) for a given quarter we propose an

approach based on GRNN time-series prediction. Thus far, we have demonstrated the potential of

GRNN-based models to predict univariate time series. However, to estimate the current GDP value we

should consider numerous different time series, some of which may be observed at higher frequencies

than quarterly. We propose a specific extension of the GRNN framework, enabling the use of univariate

GRNN time-series predictions to nowcast the GDP and exploit monthly indicators.

Contemporaneous values of some crucial macroeconomic variables are not observed within a quar-

ter. In the case of Germany, the first official estimates of the overall economic development are

available only when GDP figures are released, that is, 30 days after the end of a quarter.4 However,

4https://www.destatis.de/EN/Service/EXDAT/Datensaetze/early-indicator-economic-development.html
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it is possible to estimate the GDP using higher frequency variables (monthly, daily) that are observed

and published within a quarter (Giannone et al., 2008).

As a preliminary step of our analysis, actual (level) values of monthly time series yt,n, n = 1, . . . , N ,

are aggregated to match the quarterly frequency. We denote aggregated time series yQt,n. Let us

consider Syt = {yQt,1, y
Q
t,2, ..., y

Q
t,N} a set of all aggregated time series yQt,n selected to nowcast GDP for

any given quarter t. We define ỹQt,n as actual observations of time series yQt,n ∈ Syt divided by the

corresponding value of GDPt:

ỹQt,n =
yQt,n

GDPt
yQt,n ∈ Syt (14)

We chose this specification for two main reasons. First, taking a ratio relates to a log transformation.

Additionally, the actual GDP values, unlike some indicators, are far from zero. Therefore we need not

to be concerned about putting them into the denominator. Let us now consider a set of all aggregated

time series Sỹ = {ỹQt,1, ỹ
Q
t,2, ..., ỹ

Q
t,N} transformed according to (14). Each entity of the set depicts the

dynamics of an observed time series relative to GDP.

When we obtain Sỹ, we can separately train each ratio ỹQt,n ∈ Sỹ on all available information

using GRNN with transformation (additive and multiplicative) and without transformation and con-

duct a one-step-ahead forecast. As we argue further, it seems necessary to apply transformations

because some ỹQt,n are in fact trend-stationary or non-stationary. Thus, we have three different point

nowcasts for every ỹQt,n. We denote obtained nowcast ˆ̃yQt,n and a set of all ”bivariate” nowcasts as

Sˆ̃y = {ˆ̃yQt,1, ˆ̃y
Q
t,2....

ˆ̃yQt,N}. Finally, after predicting ˆ̃yQt,n ∈ Sˆ̃y we retrieved the GDP nowcasts using the

following relation:

ĜDP t,n =
yQt,n
ˆ̃yQt,n

(15)

We obtained N different ”bivariate” GDP nowcasts for a given quarter t. We collected all the

nowcasts in a set SGDP = {ĜDP t,1, ĜDP t,2...ĜDP t,N}. As a final prediction we use the median

of this set as in Stock and Watson (1999), for example. The median is more robust than the mean

because of potential outliers. It is also possible to estimate a trimmed mean – the value one can

estimate after eliminating a certain percentage of the dataset’s smallest and largest values. However,

to produce our nowcast, we used the median because it allowed us to use all available data without

any imposed restrictions. It is also possible to obtain the same set as SGDP but with growth rates by

modifying each entity accordingly.

4.2 Data

Our data set consisted of 125 German macroeconomic indicators, and the sample covers the period

from first quarter of 1991 to the second quarter of 2022. Each time series was seasonally adjusted.

Our proposed method allows us to explicitly capture a ragged edge phenomenon using only those

time series for which we have at least one observation within a quarter t and aggregating it to quarterly
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frequency. We considered two different scenarios based on data availability:

1. Real-time nowcasting : We used the data available one month into the quarter. Missing monthly

values were forecasted using either GRNN with transformations or ARMA models.

2. Full data backcasting : We used the complete data for a given quarter, assuming access to all

monthly and quarterly data. Under these settings, each model should perform better due to the

availability of more information.

To compared the forecasting power of each model, we selected 15 quarters (Q1 2020 to Q3 2023) for

real-time nowcasting and 22 quarters (Q1 2017 to Q2 2022) for complete data backcasting, and conduct

a one-step-ahead pseudo-out-of-sample forecast. For example, we used each indicator to produce a

nowcast for Q2 2022, including all available information within Q2 2022. Based on this information,

the current state of GDP was evaluated. The performance of each model was then calculated by

comparing an estimation to the actual value of GDP using (3) and (4). This procedure was repeated

for each pre-selected quarter. The periods chosen for the empirical analysis included the COVID-19

crisis because it is useful to study the performance of the models under highly volatile conditions.

4.3 Benchmark Selection

We compare the GRNN predictions to nowcasts produced by two German research institutes. The

ifo Institute publishes their GDP nowcasts, known as ifoCAST, updating them twice a month based

on available data Lehmann et al. (2020). The core of ifoCAST is a dynamic factor model with mixed

frequencies. Another institute is the IWH, whose nowcasts (IWH Flash) are considered advantageous

for nowcasting German economic activity (Claudio et al., 2020; Heinisch and Scheufele, 2018). Unlike

the ifo, the IWH publishes its nowcasts just one month into a quarter. To ensure a fair comparison,

we used only the data available one month into the quarter for this exercise.

We select the following benchmarks to compare the full backcasting performance, for which no

predictions are available from both institutions. As a baseline model, AR(1) for quarterly GDP was

chosen as in Richardson et al. (2018). In addition, a more simplified model averaging framework based

on linear regression was estimated. This approach is similar to our proposed method. However, instead

of using GRNN, we ran N bivariate OLS regressions to obtain a similar set of GDP predictions. After

collecting all the predictions, a simple mean (which is superior in terms of forecast accuracy to taking

a median) was taken to produce a final forecast. This procedure loosely mimics the methodology of

IWH Flash. Additionally, we estimated a simple dynamic factor model (DFM), in which the optimal

number of factors to incorporate in the model was chosen according to Bai and Ng (2002). The lag

order of the factor-VAR was selected based on AIC.
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Figure 14: Actual and scaled IP values (Q1 1991 to Q2 2022)

4.4 Scaled Data for the GRNN

GDP exhibits a positive trend over time. Various other time series are characterized either by positive

or negative trends. However, a handful of indicators are relatively stable over time. This implies that

for some yQt,n its counterpart ỹQt,n may be stationary if it mimics the GDP dynamics. However, most

ỹQt,n are non-stationary. To highlight a potential difference in dynamics of ỹQt,n, we discuss two crucial

indicators, namely, the industrial production index (IP) and the ifo Business Climate Index.

IP measures the value added in the manufacturing sector and represents the output value less the

values of intermediate consumption and consumption of fixed capital. IP is an important indicator

used to assess the current state of economic activity (Eraslan and Götz, 2021). In Figure 14, the

actual (red line) and transformed IP (black line, scaled by GDP) values are depicted.

The ifo Business Climate Index is one of the most important early indicators for economic devel-

opment in Germany. This indicator has been extensively used in the literature to predict GDP and IP

(Lehmann, 2022). In Figure 15, the actual (red line) and scaled (black line) values of the ifo Business

Climate Indexes are depicted. By construction, the actual values of the ifo Business Climate Index,

unlike IP, are bounded. Thus, oscillations rather than a clear trend are observed. Correspondingly,

this forces the scaled time series to decay slowly over time, making it non-stationary. Nonetheless,

similarities in dynamics between the two lines are observed, indicating a positive association between
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Figure 15: Actual and scaled ifo Business Climate Index (Q1 1991 to Q2 2022)

GDP and the ifo Business Climate Index.

4.5 Results

Real-Time Nowcasting

First, we analyzed the nowcasting performance. Table 2 depicts both MAFE and RMSFE for all

pre-specified approaches. Additionally, we computed the combined value (GRNN combined), in which

we aggregated all GRNN estimates (with additive, multiplicative and no transformations) into one set

and took the median of all the predictions. In this scenario, we computed missing monthly values by

using GRNN with the multiplicative transformation.5

If we include the COVID-19 crisis (Q1 2020 to Q3 2020), both benchmarks, ifoCAST and IWH

Flash, outperform GRNN (columns 1-2). However, IWH Flash incorporates expert knowledge. Mean-

while, the estimations for all GRNN specifications and ifoCAST are solely based on the models’

outcomes. This is why the IWH Flash performs considerably better than other selected models in

the real-time setting. However, if we discard the COVID-19 data (columns 3-4), GRNN is superior to

existing nowcasting approaches for German GDP, yielding lower results for RMSFE and MAFE.

5Similar results are obtained if missing values are forecasted using ARMA or GRNN with additive transformation.
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Q1 2020 - Q3 2023 Q4 2020 - Q3 2023

Model MAFE RMSFE MAFE RMSFE

GRNN additive 1.48 2.63 0.55 0.70

GRNN no transformation 1.90 2.96 0.96 1.20

GRNN multiplicative 1.39 2.62 0.42 0.60

GRNN combined 1.39 2.62 0.42 0.59

ifoCAST 1.44 1.94 0.99 1.31

IWH Flash 1.04 1.62 0.60 1.01

Table 2: Real-time nowcasting performance with monthly data forecast by GRNN with the multi-

plicative transformation

Model MAFE rMAFE p-value RMSFE rRMSFE p-value

GRNN additive 0.96 0.56 0.033 1.82 0.51 0.084

GRNN no transformation 0.83 0.48 0.070 1.21 0.34 0.087

GRNN multiplicative 1.00 0.59 0.031 1.92 0.54 0.087

GRNN combined 0.94 0.55 0.032 1.75 0.49 0.084

OLS model averaging 1.27 0.74 0.064 2.55 0.71 0.123

DFM 1.57 0.91 0.205 3.06 0.86 0.144

AR(1) 1.71 1 – 3.57 1 –

Table 3: Backcasting performance (Q1 2017 - Q2 2022)

Full Data Backcasting

Table 3 presentsMAFE and RMSFE, respectively, as well as rMAFE and rRMSFE. Each GRNN-

based model outperforms the other models in terms of MAFE and RMSFE. On average, GRNN

approaches can reduce the forecasting error by almost 50% compared to the AR(1) model. The

model averaging approach and DFM yield better nowcasts than the benchmark over the entire period.

Additionally, we conducted the one-sided Diebold-Mariano (DM) test with the Harvey-Leybourne-

Newbold correction for small samples to check whether two forecasts have the same accuracy.6 We

had to use a corrected version of the DM test since our sample size is not large enough to implement

the classic version. Corresponding p-values are reported in Table 3. The DM test results using absolute

errors demonstrate that we can reject the null hypothesis when comparing each GRNN-based model

and the model averaging approach to AR(1) at 10%. Similar results were obtained using a quadratic

loss function instead of MAFE.

6The alternative hypothesis is that the first forecast is more accurate than the second forecast, namely AR(1).
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Model rMAFE rRMSFE

GRNN additive 0.53 0.50

GRNN no transformation 0.30 0.29

GRNN multiplicative 0.58 0.53

GRNN combined 0.52 0.48

Model averaging 0.69 0.71

DFM 0.82 0.84

AR(1) 1 1

Table 4: Backcasting performance (Q1 2020 - Q1 2021)

Below, we will discuss how the models performed during the COVID-19 crisis. Table 4 shows the

corresponding rMAFE and rRMSFE values for first quarter of 2020 to first quarter of 2021. Gener-

ally, for most models, the results are similar to Table 3, except for GRNN without data transformation.

This model performs significantly better from Q1 2020 to Q1 2021, most accurately predicting the

current state of economic activity. However, if we look at the quarters before the COVID-19 pan-

demic, i.e., Q1 2017 to Q4 2019, and after this period, namely Q2 2021 to Q2 2022, rMAFE and

rRMSFE for GRNN with no transformation yield 1.2 and 1.3, respectively. Recall that a classic

GRNN model cannot capture any trend by construction. Therefore during the expansion, this specifi-

cation cannot produce reliable estimations, unlike, for example, GRNN with additive transformation.7

However, GRNN with unmodified data may perform substantially better during the crisis, relying only

on previously observed data.

Surprisingly, there is no additional gain from using GRNN with a stationarity test in advance.

This can be explained as follows: GRNN with multiplicative and additive transformations on average

yield closely-related estimations for one-step-ahead forecasting. Thus, under the proposed framework

of obtaining different ”bivariate” nowcasts and taking a median of the set, time series differentiation

due to non-stationarity is redundant.

Overall, an approach based on GRNN with additive transformation should be more reliable than

its counterpart (multiplicative) in the case of Germany. However, if one expects a rather drastic drop

in economic activity, then GRNN without transformation will better capture this phenomenon.

5 Conclusions

We demonstrate the advantages of using a GRNN-based approach for macroeconomic nowcasting.

First, we documented the properties of GRNN forecasts in a Monte Carlo investigation. We simulated

7rMAFE and rRMSFE for Q1 2017 to Q4 2019 are 0.7 and 0.8, respectively. Meanwhile, in the post-Covid quarters,

both metrics yield 0.6.

22



different univariate DGPs and compared the forecasting performance of GRNN and AR(1). In many

cases, the GRNN approach outperformed the benchmark. Additionally, we showed that ARMA fitting

approaches, even though they cannot properly identify the true DGP in many cases, yield better pre-

dictions if the true DGP is linear. However, unlike GRNN, standard parametric approaches based on

ARMA cannot detect nonlinearity. We argue that it is better to use a non-parametric approach, which

is more flexible, rather than imposing restrictive and often incorrect assumptions about underlying

distributions.

We propose a new method of using a univariate time-series GRNN model to nowcast German GDP.

First, specific data scaling needs to be implemented, i.e., each indicator is divided by GDP. Then, these

ratios are used to perform one-step-ahead forecasting using GRNN. Afterward a set of GDP nowcasts is

obtained using actual aggregated observations within a given quarter. In real-time settings, GRNN can

compete with existing approaches. Finally, we show that this algorithm has a high forecasting power,

outperforming traditional nowcasting models (AR(1), DFM, model averaging), especially during the

COVID-19 crisis once a sufficient amount of data is observed within a given quarter.
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Appendices

A Nadaraya-Watson Gaussian Kernel Regression Estimator

Let us assume that for given pairs (Xi, Yi)
N
i=1, we have the following model:

Yi = g(Xi) + ϵt, (16)

where function g(·) is unknown.

Additionally, we assume that the error terms ϵt are i.i.d random variables with mean 0 and some

variance σ2. In this case, g(·) is a conditional mean E(y|x) or alternatively (Demir and Toktamiş,

2010):

g(x) = E(y|x) =
∫

yf(x, y)

f(x)
dy, (17)

where f(x, y) is the joint density function of (X,Y ), whereas f(x) is the marginal density.

Applying the kernel density estimato, a non-parametric method, which estimates a probability

density function of a given random variable based on kernels, for both f(x, y) and f(x), one can

obtain the Nadaraya-Watson kernel estimator of the regression function g(·):

ĝ(x) = Ê(y|x) =
∑N

i=1 YiK(x−Xi
h )∑N

i=1K(x−Xi
h )

=

N∑
i=1

K(x−Xi
h )∑N

i=1K(x−Xi
h )

Yi =

N∑
i=1

Wi(x)Yi

Wi(x) =
K(x−Xi

h )∑N
i=1K(x−Xi

h )
,

(18)

whereK(·) is a (symmetric) non-negative integrable function called kernel, h is a bandwidth parameter,

Wi is a set of weights, which sum up to 1.

A kernel function, denoted as K(·), is an arbitrary function that satisfies the following general

conditions (inter alia, see Silverman (2018)):

•
∫∞
−∞K(u)du = 1

• K(u) = K(−u) – in most cases symmetry is assumed

•
∫∞
−∞ uK(u)du = 0 – first moment equals to 0

•
∫∞
−∞ u2K(u)du ̸= 0 – second moment differs from 0

Although plenty of functions satisfy the properties mentioned above, choosing a specific kernel

should not significantly influence the precision of the density estimation. Still, the most commonly

used kernels in empirical studies are Epanechnikov and Gaussian (Härdle, 1990; Hansen, 2009). In

our study, we selected the Gaussian kernel, which assures the smoothness of a density function and

the existence of derivatives of all orders (Zambom and Ronaldo, 2013). More formally, the Gaussian

kernel could be expressed as follows:

KG(u) =
1√
2
exp

(
−u2

2

)
(19)
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Many scholars have argued that the Nadaraya-Watson kernel estimator relies heavily on a selection

of bandwidth h, which controls the smoothness of the probability density function estimation (Wang

and Suter, 2004; Sheather, 2004). Several procedures have been proposed to find an optimal value of

h. These approaches may be divided into two separate classes: quality-of-fit (cross-validation) and

plug-in methods (minimizing the mean integrated square error (MISE) between the real density and

its kernel-based approximation).
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