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Accurate macroeconomic forecasts are essential for effective policy decisions, yet 
their precision depends on the accuracy of the underlying assumptions. This pa-
per examines the extent to which assumption errors affect forecast accuracy, in-
troducing the average squared assumption error (ASAE) as a valid instrument to 
address endogeneity. Using double/debiased machine learning (DML) techniques 
and partial linear instrumental variable (PLIV) models, we analyze GDP growth 
forecasts for Germany, conditioning on key exogenous variables such as oil price, 
exchange rate, and world trade. We find that traditional ordinary least squares 
(OLS) techniques systematically underestimate the influence of assumption er-
rors, particularly with respect to world trade, while DML effectively mitigates 
endogeneity, reduces multicollinearity, and captures nonlinearities in the data.  
However, the effect of oil price assumption errors on GDP forecast errors remains 
ambiguous. These results underscore the importance of advanced econometric 
tools to improve the evaluation of macroeconomic forecasts.
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1 Motivation

The accuracy of macroeconomic forecasts—and their effectiveness in guiding policy—hinges on

the reliability of their underlying assumptions. Persistent disagreement and heterogeneity among

professional forecasters, as documented in the literature (e.g., Andrade et al., 2016; Juodis and

Kučinskas, 2023; Glas and Hartmann, 2022), add further complexity to forecast evaluation.

These discrepancies vary over time, highlighting the importance of understanding the mecha-

nisms driving forecast updates (revisions) and errors. A key factor influencing macroeconomic

forecasts is the set of assumptions—or expectations—regarding central conditioning variables,

such as realized values and expected future paths (Glas and Heinisch, 2023). For instance, ev-

idence from the European Central Bank (ECB) highlights the significant influence of oil price

on short-term inflation expectations in the euro area (Baumann et al., 2021). Understanding

the extent to which such expectations about these variables shape the forecast accuracy is thus

crucial for both researchers and policymakers. However, despite their importance, assumptions

are rarely documented in a consistent manner and have not been systematically analyzed in

the existing literature (e.g., Keereman, 2003; Takagi and Kucur, 2006; Fioramanti et al., 2016;

Berge et al., 2019; Engelke et al., 2019; Heinisch et al., 2024). This lack of transparency limits

our ability to evaluate the relationship between assumption errors and forecast performance.

In addition, model specification and estimation techniques significantly impact the accuracy of

the forecast. Traditional methods often encounter methodological limitations, including endo-

geneity, multicollinearity, and high dimensionality. To address these challenges, recent studies

propose machine learning-based econometric techniques, which offer flexible modeling structures

and improved prediction accuracy. Chernozhukov et al. (2018) introduce double/debiased ma-

chine learning (DML) as a powerful tool for causal inference in high-dimensional settings. Using

these algorithms to estimate nuisance parameters while preserving valid statistical inference,

DML is particularly useful to address endogeneity in macroeconomic forecasting. Empirical

applications of DML in real data contexts include studies by Shi et al. (2023), Wyrembek et al.

(2024), Guo et al. (2024), and Kalanatha Bhatta (2023), covering energy and labor markets.

To our knowledge, this is the first study to apply the double machine learning–partial linear

instrumental variable (DML-PLIV) framework in the context of macroeconomic forecasting. We

utilize a novel dataset of forecasts and assumptions for Germany published by multiple forecast

institutions. The dataset covers forecasts for GDP growth and key conditioning variables, in-

cluding oil price, exchange rate, world trade. This enables us to assess the impact of assumption

errors on forecast accuracy. Building on previous research by Heinisch et al. (2024) and Engelke

et al. (2019), who identify a positive relationship between squared assumption errors (SAE)

and squared forecast errors (SFEs) for German GDP growth, we extend their analysis by em-

ploying a semiparametric approach that accounts for endogeneity and nonlinearities. Although

their findings provide valuable information, their reliance on Ordinary Least Squares (OLS)

regression presents key limitations in addressing endogeneity and capturing complex, nonlinear

relationships. Effective causal inference extends beyond the identification of the direction of

relationships, requiring a precise quantification of their magnitude. To address these challenges,
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this paper applies partial linear instrumental variable (PLIV) regression models with DML

methods (Chernozhukov et al., 2018). This methodology enables a semiparametric analysis that

overcomes the constraints of traditional OLS models through three key contributions:

First, the DML framework is particularly well suited for managing large, structured datasets

where traditional parametric methods fail. PLIV-DML provides a reliable structure for shaping

a complex set of confounding covariates. Forecast errors are influenced by numerous macroeco-

nomic and institutional factors, which require a model capable of handling complex interactions.

OLS-based methods often struggle to incorporate multiple fixed effects and time-varying influ-

ences. Heinisch et al. (2024), for instance, estimated over 330 parameters, primarily to capture

fixed effects and interaction terms. In contrast, PLIV-DML efficiently selects and estimates

relevant variables without overfitting. Similarly, our analysis incorporates a high-dimensional

covariate structure to account for confounding factors, ensuring precise parameter estimates

while mitigating endogeneity. Similarly to Schlaak et al. (2023), we use diagnostic tests to eval-

uate two-stage least squares (2SLS) regressions and assess the validity of potential instruments.

Second, PLIV-DML allows for more complex relationships between forecast errors and as-

sumption errors. In particular, we hypothesize mutual dependencies between the squared fore-

cast errors of GDP and the squared assumption errors of key variables such as oil price, exchange

rate, and world trade. Unlike standard OLS, which imposes a strictly linear and unidirectional

relationship, the PLIV-DML approach accounts for these interactions by incorporating instru-

mental variables to address potential endogeneity, thereby allowing for a more flexible and robust

analysis of these interdependencies. This type of simultaneous influence aligns with evidence

from Tunc et al. (2022), which highlights simultaneous influences between GDP and oil price in

the German context. In addition, DML allows for controlling possible interconnections among

the assumption errors.

Finally, the validity of empirical models hinges on two critical assumptions: (i) forecaster ra-

tionality and (ii) linearity of the data-generating process. The rationality assumption stipulates

that forecasters utilize all available information efficiently when making predictions. However,

Fritsche and Döpke (2005) provide evidence of non-rational behavior among Germany’s six lead-

ing economic institutes, raising questions about the validity of this assumption. The linearity

assumption, on the other hand, suggests that forecast errors can be adequately modeled as a

linear function of assumption errors and unobserved components. We argue that the assump-

tions significantly influence model specification and the choice of analytical techniques. Using

PLIV-DML, we explicitly test for potential nonlinearities and interaction effects, providing a

more flexible model specification than previous OLS-based studies.

The paper is organized as follows. Section 2 provides an overview of the forecasts and

their underlying assumptions. Section 3 details the regression framework and causal inference

methodology, with the corresponding regression results presented in Section 4. Finally, Section

5 concludes the paper.
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2 Forecasts and Forecast Errors

The dataset comprises forecasts of German annual GDP growth for both the current and the sub-

sequent year, compiled from 12 national (in particular economic research institutes and Deutsche

Bundesbank) and international forecasters (European Commission, IMF, OECD) (Table A1).1

These institutions update their forecasts during the year—some at quarterly frequency while oth-

ers revise their forecasts less frequently (Figure A1). Hence, for a particular target year, multiple

forecasts are available from each institution. The longest forecast horizon in our dataset extends

eight quarters ahead, capturing projections for the following year made in the first quarter of the

current year.2 Our evaluation period extends from 1992 to 2019, covering a total of 1,460 GDP

forecasts — 758 for the current year and 702 for the subsequent year provided by 12 forecast

institutions.

In addition to GDP forecasts, forecast institutions disclose key assumptions underpinning

their projections that cover the external environment. While not specific to Germany, they

are central to its economic outlook. These include the oil price, world trade growth rates,

and the US dollar/Euro exchange rate. Despite their relevance, the documentation of these

assumptions varies considerably between institutions and over time, particularly in terms of

target definitions (e.g., annual averages versus end-of-year values). To address this heterogeneity

issue, our empirical analysis incorporates institution-specific and time-specific fixed effects to

account for heterogeneity in assumption targets. This adjustment ensures that discrepancies in

reported values do not bias cross-institutional comparisons. Our dataset includes a substantial

number of observations for assumptions: 1,159 for oil price, 1,123 for exchange rate, and 740 for

world trade.3 However, not all institutions systematically report all the assumptions, resulting

in a final sample of less than 700 observations in models in which all three assumptions are

included. This data constraint highlights the challenges of conducting a fully comprehensive

cross-institutional analysis while ensuring empirical robustness. Additionally, the volatility of

GDP forecasts and assumption values fluctuates over time, especially for oil price projections.

Forecast errors (FE) and assumption errors (AE) are calculated for each institution n as the

difference between the predicted and realized values for GDP and the respective assumptions

conducted at year t. They are measured for the target year t+h with a forecast horizon h ∈ [0, 1]:

FEn,t+h|t = ŷn,t+h|t − yt+h, (1)

AEn,t+h|t = ân,t+h|t − at+h. (2)

The resulting forecast errors exhibit great variance across different forecast horizons (Figure

1), indicating that institutions rely on different assumptions even when forecasting GDP for the

1 See IWH Forecasting Dashboard: https://halle-institute-for-economic-research.shinyapps.io/

economic-forecast/
2 Further details on forecast horizons are available in the Appendix. Figure A1 illustrates the varying number

of forecasts per year, which ranges from zero to eight updates. Certain institutions publish forecasts beyond
an eight-quarter horizon.

3 Detailed summary statistics are provided in Table A2 in the Appendix.
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Figure 1: GDP Forecast Errors

(a) Forecast horizon h = 0 (b) Forecast horizon h = 1

Note: Range of forecast errors conducted in the current year (h = 0) or in the previous year (h = 1) for a

particular target year.

same horizon. On average, forecasts tend to be too optimistic, except for the oil price (Table A2).

The degree of heterogeneity in the forecast errors increases with the forecast horizon (Figure

A2).

Suppose a forecaster aims to predict future macroeconomic outcome yt+h, using a forecasting

model based on a set of assumed exogenous assumptions at+h (e.g., world trade). The true data-

generating process (DGP) is:

yt+h = f(at+h, zt) + ϵt+h (3)

However, since at+h is not observable at year t, the forecaster uses an assumed value ân,t+h|t to

derive the forecast:

ŷn,t+h|t = f(ân,t+h|t, zt) (4)

Correlations across GDP forecast errors and assumption errors are generally positive in the case

of world trade, but the picture is less clear for oil price and exchange rate (Figure 2).

Figure 2: Forecast Error Correlation

(a) World Trade (b) Exchange Rate (c) Oil

Note: Correlation between GDP forecast errors and different assumption errors for the current year (red) and

next year (blue).
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To assess forecast accuracy and the impact of assumption errors, we analyze the squared

forecast error (SFE) (5) for GDP and squared assumption errors (SAE) (6) for each conditioning

variable. While forecast and assumption errors preserve the sign of the mistake, the squared

errors focus on the magnitude of errors. For a forecast made by institution n at year t for target

year t+ h, these are defined as

SFEn,t+h|t =
(
ŷn,t+h|t − yt+h

)2
, (5)

SAEn,t+h|t =
(
ân,t+h|t − at+h

)2
, (6)

respectively. Hence, in a conceptual model centered on forecast accuracy, larger assumption

errors (in absolute terms) lead to larger GDP forecast errors. A key issue is that assumption

errors may be endogenous in forecast error regressions. Therefore, to investigate the persistence

of assumption errors over time, we construct a lagged squared assumption error (LSAE), which

reflect a one-year lag to the forecast target year and to the year at which the forecast has been

made (7). To control for potential reverse causality between forecast and assumption errors,

we compute the average squared assumption error (ASAE) across all institutions i ∈ {1, . . . N},
except the one analyzed (i ̸= n), for the same forecast target year and horizon (8). In addition,

to account for the persistence of assumption errors over time, we introduce LASAE (9), which

applies a one-year delay.

LSAEn,t+h|t =
(
ân,t+h−1|t−1 − at+h−1

)2
= SAEn,t+h−1|t−1 (7)

ASAEn,t+h|t =
1

N − 1

∑
i ̸=n

SAEi,t+h|t (8)

LASAEn,t+h|t = ASAEn,t+h−1|t−1 =
1

N − 1

∑
i ̸=n

SAEi,t+h−1|t−1 (9)

These variables enhance the robustness of our instrumental variable approach in the 2SLS re-

gressions and improve the predictive accuracy of the DML model by mitigating potential biases

in assumption-based forecasts.

3 Regression Analysis and Causal Inference

3.1 Traditional Econometric Approaches

This section outlines the implementation of traditional econometric methods: Ordinary least

squares (OLS) and two-stage least squares (2SLS) to analyze the impact of assumption errors

on GDP forecast errors. Unlike modern machine learning approaches, these methods rely on

different parametric assumptions and linear relationships. The OLS-based models, following
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Heinisch et al. (2024), examine the relationship between each SAE (D) and the SFE of GDP

(Y ), controlling for additional covariates X:4

Y = β0 +Dβ1 +Xγ + ϵ, (10)

where β0 is the intercept, β1 captures the effect of the squared assumption errors D on Y,

γ represents the coefficients associated with the covariates X, and ϵ is the error term. Although

OLS provides a simple estimation strategy, it assumes exogeneity of D, ignores potential non-

linearities, and does not account for mutual dependencies between Y and each D. We employ

the 2SLS method to overcome the potential endogeneity, which is widely used in instrumental

variable (IV) regressions. In contrast to OLS, we only estimate the causal impact of either oil,

world trade, or exchange rate squared assumption errors using various instruments Z:

D = α0 + Zθ +Xγ + u., (11)

Y = β0 + β1D̂ +Xγ + ϵ. (12)

In the first stage (11), instrumental variables Z and control covariates X are used to predict

squared assumption errors D̂. In the second stage (12), we use D̂ together with the control

covariates, to estimate the causal effect (β1), under the condition that the instruments Z are

valid.

For the selection of valid instruments, at least one instrument Z is defined for the variable

of interest D, and at least one confounding covariate X. We perform multiple 2SLS regressions

with different model specifications (Table 1) to select valid instruments.5 A valid instrument

must fulfill two key conditions: (i) relevance, which means it must be sufficiently correlated with

the endogenous regressor, and (ii) exogeneity, implying it must be uncorrelated with the error

term in the structural equation. To assess these conditions, we employ three tests. The weak

instrument test evaluates whether the instrument is strongly correlated with the endogenous

regressor; under the null hypothesis, the instrument lacks sufficient correlation and is thus weak.

The Wu-Hausman test (Hausman, 1978) compares the OLS and 2SLS estimators; under the null

hypothesis, both estimators are consistent, but OLS is more efficient, whereas under the alterna-

tive hypothesis, OLS is inconsistent and 2SLS is preferred. The Sargan test, or J-test (Sargan,

1958), assesses the validity of overidentifying restrictions and is applicable when the number

of instruments exceeds the number of endogenous variables. Including the remaining days to

the target year as an additional instrument increases the number of instruments relative to the

number of endogenous regressors, allowing the use of the Sargan test to examine the validity

of over-identifying restrictions (see Table 1). Under its null hypothesis, the model is correctly

specified, indicating that the instruments are exogenous and uncorrelated with the residuals.

Therefore, our instrument selection is guided by the requirement to reject the null hypothesis

4 In the following matrices for different variables are denoted by bold font (X), while vectors are in normal
font. Further, the vector of parameters is denoted by a bold font (β).

5 The 2SLS models presented in Table 1 have not been chosen for the model specification itself, but rather for
the diagnostics reported.
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in the weak instrument and Wu-Hausman tests while failing to reject the null hypothesis in the

Sargan test, ensuring both relevance and exogeneity.

Table 1: Selection of instruments

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: remaining days and Instruments: remaining days and Instruments: remaining days and

ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT

SAE Oil Price 0.001∗∗∗ 0.002∗∗ 0.006∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗ 0.0001 0.0004 0.0003
(0.0003) (0.001) (0.001) (0.0002) (0.0002) (0.001) (0.001) (0.001) (0.0003)

SAE Exchange Rates 0.337 −0.491 0.438 8.211 −0.760 −91.132 0.731 −0.110 0.646
(1.468) (1.724) (1.898) (24.916) (2.463) (64.705) (1.616) (1.833) (1.579)

SAE World Trade 0.082∗∗∗ 0.080∗∗∗ 0.064∗∗∗ 0.084∗∗∗ 0.083∗∗∗ 0.080∗∗∗ 0.108∗∗∗ 0.102∗∗∗ 0.105∗∗∗

(0.002) (0.004) (0.005) (0.002) (0.002) (0.006) (0.012) (0.020) (0.003)

Constant −0.129 −0.188 −0.798∗∗∗ −0.333 −0.073 2.727 −0.399∗ −0.316 −0.378∗∗

(0.149) (0.187) (0.232) (0.781) (0.154) (2.037) (0.218) (0.295) (0.161)

Observations 651 639 645 651 639 645 651 639 645
R2 0.754 0.754 0.593 0.744 0.758 −0.718 0.706 0.729 0.718
Adjusted R2 0.753 0.753 0.591 0.743 0.757 −0.726 0.705 0.728 0.717

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.310 0∗∗∗ 0.312 0∗∗∗ 0.015∗∗ 0∗∗∗

Wu-Hausman 0.028∗∗ 0.343 0∗∗∗ 0.746 0.844 0.0002∗∗∗ 0.021∗∗ 0.320 0∗∗∗

Sargan 0.447 0.751 0∗∗∗ 0.024∗∗ 0.325 0∗∗∗ 0.820 0.925 0.841

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Besides the “remaining days” until the end of the target year, we construct instruments such

as average squared assumption errors (ASAEs) and their respective lags (LASAE) to mitigate

reverse causality and isolate the causal impact of assumption errors on forecast accuracy. Our

findings indicate that the ASAE of oil price is a valid instrument for oil price SAE. In addition,

ASAE of oil price and ASAE of world trade serve as valid instruments for world trade SAE.

Further validation, shown in Appendix Table B1 to Table B7, confirms the robustness of our

instrument selection (e.g., substituting remaining days with its squared version, Table B6).

We exclude exchange rate SAE from the analysis because the weak instrument test fails to

reject the null hypothesis, suggesting an insufficient correlation between the instrument and

the endogenous variable. Thus, we treat one variable at a time as endogenous, either oil price

SAE or world trade SAE. For each combination of the variable of interest and its corresponding

instrument, we perform a separate 2SLS regression. In the following analysis we will not report

results for LASAE, because they do not pass the Wu-Hausmann test.6

3.2 Machine Learning-Based Approaches

To overcome the limitations of OLS and 2SLS, and, hence, i) mitigate endogeneity issues in

macroeconomic forecasting, ii) relax the restrictive linearity assumption, and iii) account for

high-dimensional confounding variables while maintaining interpretability, we adopt a Partial

Linear Instrumental Variable (PLIV) model within the Double Machine Learning (DML) frame-

6 See Table B8, B9 and B10 in the Appendix
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work (Figure 3). 7 This approach enables a semi-parametric estimation that flexibly models the

relationship between assumption errors and forecast errors. Unlike conventional machine learn-

ing approaches, which may suffer from overfitting and biased estimators for treatment effects

(El-Shagi et al., 2013; Beutel et al., 2019), DML mitigates these issues by leveraging orthogonal-

ization and sample-splitting techniques (Chernozhukov et al., 2018). The PLIV model is given

by:

Z = m0 (X) +V, E (V|X) = 0,

Y −Dθ0 = g0 (X) + ζ, E (ζ|Z,X) = 0.
(13)

Therefore, the estimation procedure consists of two stages. In the first stage, machine learning

methods are applied to estimate nuisance parameters m0 and residuals V̂ . In the second stage,

estimated residuals V̂ in combination with nuisance parameter g0 are necessary to identify the

target parameter θ0 representing the causal effect, under standard IV assumptions. For each

SAE, a proper set of instruments Z is selected to address endogeneity concerns, along with a

set of additional covariates X (e.g., forecast horizon, institutional-fixed effects, and year-fixed

effects) (Bach et al., 2021).8

Figure 3: PLIV model diagram

Treatment Instruments Errors

Output Covariates

Y

D

X

Z V

Note: Own representation.

Similarly to the 2SLS case above, the PLIV model regressions consider only one variable as

endogenous in each regression and separate regressions are used for each combination of SAE

and instrument. Overall, we find four valid instrument and SAE combinations to implement

our PLIV model: i) SAE oil price with instrument oil price ASAE. ii) SAE world trade with

instrument oil price ASAE. iii) SAE world trade with instrument world trade ASAE. iv) SAE

world trade with instruments world trade and oil price ASAE. The DML technique employs

cross-fitting to maintain orthogonality between estimated errors. It is based on a k-fold cross-

validation approach, where the dataset is partitioned into k distinct folds or subsets. We train

the model on k − 1 folds and test it on the one remaining fold. The final model performance

is generally taken as the average of the performance metrics across all k iterations, providing a

more reliable assessment of the model’s ability to generalize to unseen data. In particular, we

7 The implementation of DML methods has been performed through the R package mlr3 with mlr3learners
extension (Lang et al., 2019) and the package DoubleML (Bach et al., 2021). The former provides access to
learning algorithms necessary for implementing the models released from the latter.

8 We report for each DML regression instrument validity in the Appendix B (from Table B1 to Table B10).
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have chosen a five-fold cross-fitting for the estimation of the causal parameter θ0. Each PLIV

estimation uses the same learning algorithm for all the regressions that ultimately lead to finding

m̂0, ĝ0 and θ̂0. Additionally, to prevent institutional imbalance across folds—where certain

forecasting institutions are underrepresented—we enforce stratified random sampling, ensuring

that all institutions are proportionally represented across folds. We use four machine learning

algorithms, each selected for its ability to capture different functional forms and relationships: i)

Random Forests (Breiman, 2001; Wright and Ziegler, 2017), ii) Decision Trees (Breiman et al.,

1984), iii) Gradient Boosting (Friedman, 2001; Chen and Guestrin, 2016), and iv) Lasso (Elastic

Net) (Zou and Hastie, 2005; Friedman et al., 2010). These learning methods have been tuned

following Bach et al. (2021). We tune hyperparameters using grid search by minimizing the mean

squared error (MSE) of the training regressions. This approach is applied to all the learners

discussed above, except for the Elastic Net algorithm. For Elastic Net, a built-in function

automates both the tuning process —similar to the manual grid search used for other models —

and the final estimation. The regression results with optimized hyperparameters are presented

in Section 4.

4 Regression results

This section presents the empirical results obtained from the estimation of double machine

learning (DML) using the PLIV regression model. For comparison purposes, we also report

results from the original OLS estimates of Engelke et al. (2019), which do not use instrumen-

tal variables or machine learning techniques. In addition, we present the results from simple

2SLS regressions that serve as an intermediary approach using traditional instrumental variable

estimation. The regression results for different model specifications are reported in Figures 4

and 5.9 The baseline specification excludes controls, capturing the total association between

SAEs and forecast errors, but is vulnerable to omitted variable bias. Adding forecast horizon

controls—measured in remaining days until year-end—accounts for information availability and

forecast revision opportunities, which can influence forecast accuracy independently of assump-

tion errors. Institution-fixed effects are introduced to correct for persistent, institution-specific

forecasting biases that might confound the relationship between SAEs and SFEs. Year-fixed

effects capture common macroeconomic shocks or trends in forecasting behavior that vary over

time but affect all institutions similarly. The combined fixed effects specification includes both

institutional and temporal controls, offering a more comprehensive adjustment for confounding

structure, while including their interaction terms allows for modeling institution-specific tem-

poral dynamics (e.g., changes in staff, models, or procedures) that may affect forecast quality.

Together, these controls aim to improve the identification of the true causal contribution of

assumption errors to forecast performance.

Across all model specifications, SAEs in world trade forecasts emerge as a significant driver

of GDP forecast errors. Under OLS estimation, the squared assumption error of world trade is

9 We report regression results in Tables C1 to C5 in the Appendix.
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positively and significantly correlated with squared GDP forecast errors, explaining a substan-

tial portion of the variation. However, when accounting for potential endogeneity using 2SLS

and DML techniques, the estimated impact of SAE world trade increases in magnitude. This

consistent difference suggests that OLS underestimates the causal contribution of world trade

errors, likely because it fails to isolate exogenous variation in the trade forecasts. Economically,

this result indicates that forecasters’ ability to anticipate world trade developments is crucial

for accurate GDP predictions. Errors in trade assumptions may reflect unanticipated global

shocks or misjudgments about global demand, which have strong downstream effects on domes-

tic output projections. DML methods, leveraging the ASAE of world trade or a combination of

trade and oil instruments, yield significant estimates across learners. When using only ASAE

oil price as an instrument for trade SAEs, the results remain significant in most cases, except

under lasso, which appears more sensitive to instrument strength.

The robustness of these findings is confirmed after introducing additional controls. Adding

the forecast horizon, measured in remaining days until the target year ends, does not sub-

stantially alter the magnitude or significance of the estimates. This suggests that the timing

of forecast releases does not drive the observed impact of trade SAEs, but rather the quality

of trade assumptions themselves. Further, controlling for institution-fixed effects-—to account

for systematic biases in specific forecasting institutions—-leaves the results largely unchanged.

This implies that the sensitivity to trade errors is not institution-specific but a general feature of

macroeconomic forecasting. Including year-fixed effects, designed to capture time-varying eco-

nomic conditions or common shocks across forecasters, produces more nuanced findings. OLS

estimates decrease notably, suggesting time-fixed effects absorb some of the variation previously

attributed to SAE world trade. However, 2SLS and DML estimates increase, reinforcing the

idea that OLS may be biased downward in the presence of omitted variables correlated with

trade errors.

In the most comprehensive specification–joint year- and institution-fixed effects in addition

to the remaining days until the end of the target year–2SLS fails due to multicollinearity, un-

derscoring its limitations in high-dimensional settings. In contrast, DML techniques continue to

deliver stable and significant estimates, highlighting their flexibility and robustness. Results fur-

ther support the underestimation hypothesis: even in complex model environments, SAE world

trade remains a powerful and statistically significant predictor of GDP forecast error. Intro-

ducing interactions between year and institution effects to account for time-varying institutional

behavior (e.g., staff turnover, model changes) does not meaningfully alter the conclusions. While

the lasso learner produces an insignificant estimate when instrumenting with ASAE oil price,

all other learners confirm the significant role of world trade errors. These results suggest that

institutional changes do not systematically bias the causal link between trade SAEs and GDP

forecast errors.

We now turn to the role of oil price assumption errors in driving GDP forecast inaccuracies.

Like world trade, oil prices are a central variable in macroeconomic forecasting due to their broad

impact on inflation, consumption, investment, and the external sector. Misjudging oil prices can
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distort GDP projections by affecting assumptions about cost structures, energy consumption,

and trade balances. OLS estimates show a significant and positive impact of SAE oil price

on SFE GDP, although the magnitude is modest. When applying 2SLS and DML techniques

using ASAE oil price as an instrument, the estimated coefficients are slightly higher but broadly

consistent. This suggests that while endogeneity may be less severe for oil price forecasts com-

pared to trade, it still exists. Importantly, the results are stable when adding forecast horizon

variables, indicating that the effect of oil price assumption errors does not depend on how early

or late forecasts are issued. Likewise, controlling for institutional effects shows little variation

in the results, implying that the forecast errors associated with oil prices are not tied to specific

institutional characteristics.

When year-fixed effects are included, OLS and 2SLS estimates increase slightly. Among

DML learners, random forest and boosting exhibit slightly larger coefficients, while lasso and

decision trees yield stable estimates. These patterns suggest that oil price shocks are somewhat

time-dependent and that flexible learners can capture this temporal structure more effectively.

As with world trade, including all fixed effects and remaining days until the end of the forecast

target year introduces multicollinearity in 2SLS models, but DML methods remain reliable. The

random forest estimate declines slightly in this case, with increased standard error, whereas other

learners show minimal changes. This suggests that machine learning estimators can maintain

performance even in complex, high-dimensional setups.

Finally, when we account for interactions between year and institution effects, the SAE

oil price estimates remain significant and stable across most learners. The only exception is

the random forest learner, which produces a higher coefficient, potentially capturing nonlinear

interaction effects between forecasting institutions and macroeconomic shocks. Overall, the

findings imply that oil price SAEs have a consistent and significant causal impact on GDP

forecast errors, and that institutional dynamics do not play a major mediating role.
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Figure 4: Estimation coefficients for SAE Oil Price

(a) Biasedness (b) Horizon in remaining Days

(c) Institutional-Fixed Effects (d) Year-Fixed Effects

(e) Year- and Institutional-Fixed Effects
(without Interaction)

(f) Year- and Institutional-Fixed Effects
(with Interaction)

Note: Estimation coefficients are depicted for each estimation method and different estimation settings. Error
bars represent the estimated standard errors.
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Figure 5: Estimation coefficients for SAE World Trade

(a) Biasedness (b) Horizon in remaining Days

(c) Institutional-Fixed Effects (d) Year-Fixed Effects

(e) Year- and Institutional-Fixed Effects
(without Interaction)

(f) Year- and Institutional-Fixed Effects
(with Interaction)

Note: Estimation coefficients are depicted for each estimation method and different estimation settings. Standard
errors are depicted. Different colors represent different instruments: ASAE oil price (green), ASAE world trade
(blue), ASAE world trade and oil price (purple). Error bars represent the estimated standard errors.
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5 Conclusion

For forecast evaluation, the PLIV model proves to be a valuable tool for estimating causal effects

in the presence of high-dimensional controls and potential endogeneity. By combining a linear

component for the variable of interest with a nonparametric component for control variables,

the PLIV model allows flexible modeling of complex relationships. Our findings underscore the

advantages of machine learning approaches in addressing multicollinearity issues that hinder

traditional estimators, such as two-stage least squares. Specifically, we demonstrate that OLS

underestimates the importance of world trade for Germany’s GDP, highlighting the potential of

machine learning methods to control more complex functional relationships. Furthermore, our

results suggest the presence of reverse causality in the relationship between assumption errors in

oil price and world trade and subsequent forecast errors. This finding has direct implications for

policy analysis, as it demonstrates how inaccurate assumptions can affect projections of GDP

growth.

To our knowledge, we are the first study to apply the DML-PLIV framework in the context

of macroeconomic forecasting to address the challenges of high-dimensional data and obtain

robust estimates. First, the method leverages flexible machine learning techniques to estimate

nuisance parameters, offering substantial improvements over non-parametric methods tradition-

ally employed in semi-parametric approaches. Second, it enables statistical inference by utilizing

estimating equations that adhere to the Neyman orthogonality condition and implementing a

sample-splitting strategy.

Our results contribute to the discussion of weak instruments and the validity of instrumental

variables in macroeconomic models. However, our diagnostic analysis identifies relevant instru-

ments for the SAE of oil price and world trade based on the average of squared assumption

errors (ASAE), suggesting that ASAE can serve as a non-weak and valid instrument.

A key insight from our results is the discrepancy between the OLS-based and DML-based

estimates. In particular, OLS consistently underestimates the impact of SAE on oil price and

world trade on the SFE of GDP. Although 2SLS produces estimates that vary between OLS-

like and DML-like results, it suffers from significant multicollinearity issues when incorporating

high-dimensional covariates. In contrast, the DML approach via the PLIV model effectively

mitigates these challenges, demonstrating superior robustness in handling complex datasets with

confounding variables of high dimensions. Across multiple specifications, ML techniques, such

as random forests, regression trees, and LASSO, provide larger and more significant estimates

compared to OLS, except for boosting methods, which exhibit less consistent significance.

Furthermore, our results regarding the SAE of the oil price deviate from previous literature.

Heinisch et al. (2024) consistently report a positive relationship between SAE of oil price and

SFE of GDP, our findings suggest that this relationship is not always positive. In several

specifications, an increase in the squared assumption errors of oil price appears to reduce the
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magnitude of squared GDP forecast errors. However, since only a subset of negative estimates

is statistically significant, the evidence remains inconclusive.

Future research should explore additional covariates and other data sets to further refine

the understanding of forecast accuracy and assumption errors. In particular, the usage of text

mining techniques applied to newspaper articles and social networks appears promising in en-

riching the information set included in the analysis. A deeper investigation into the interactions

among covariates may also improve our understanding of the effectiveness of DML in resolv-

ing multicollinearity issues. In addition, analysis of forecast errors of GDP components also

published by forecasting institutions could increase our understanding of the determinants of

forecast accuracy.

Overall, our study advances the field of macroeconomic forecasting by integrating modern

econometric techniques with ML-based estimation methods. By providing a flexible and robust

framework, our approach offers valuable insights into the causal dynamics of assumption and

forecast errors for improving methodologies in macroeconomic forecasting.
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Fritsche, U. and Döpke, J. (2005). Forecast errors and the macroeconomy: a non-linear

relationship? Tech. rep., DIW Discussion Papers.

Glas, A. and Hartmann, M. (2022). Uncertainty measures from partially rounded probabilis-

tic forecast surveys. Quantitative Economics, 13 (3), 979–1022.

— andHeinisch, K. (2023). Conditional macroeconomic survey forecasts: Revisions and errors.

Journal of International Money and Finance, 138, 102927.

Guo, Y., Zhang, Y., Goh, K.-Y. and Peng, X. (2024). Can social technologies drive pur-

chases in e-commerce live streaming? an empirical study of broadcasters’ cognitive and affec-

tive social call-to-actions. Production and Operations Management.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the

econometric society, pp. 1251–1271.

Heinisch, K., Schult, C. and Stapper, C. (2024). Transparency and forecasting: the impact

of conditioning assumptions on forecast accuracy. Applied Economics Letters, online, 1–5.
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Advancing Forecast Accuracy Analysis

A Online Appendix

Table A1: List of Forecasters

Abbreviation Full Name

National Economic Research Institutes

DIW German Institute for Economic Research
HWWI Hamburg Institute of International Economics (formerly HWWA before 2006)
IfW Kiel Institute for the World Economy
IMK Macroeconomic Policy Institute
ifo Leibniz Institute for Economic Research at the University of Munich
IWH Halle Institute for Economic Research
RWI RWI–Leibniz Institute for Economic Research

Joint Economic Forecast

GD Joint Economic Forecast

National Financial Institution

BBK Deutsche Bundesbank

International Institutions

EC European Commission
IMF International Monetary Fund
OECD Organisation for Economic Co-operation and Development
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Figure A1: Number of Forecasts

(a) GDP (b) World Trade

(c) Exchange Rate (d) Oil Price

Note: Number of forecasts and assumptions analyzed for a particular target year.
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Advancing Forecast Accuracy Analysis

Figure A2: Assumption Errors

(a) World Trade Forecast Error (h=0) (b) World Trade Forecast Error (h=1)

(c) Exchange Rate Forecast Error (h=0) (d) Exchange Rate Forecast Error (h=1)

(e) Oil Forecast Error (h=0) (f) Oil Forecast Error (h=1)

Note: Range of forecast errors for a particular target year conducted in the current year (h=0) or in the

previous year (h=1).
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Table A2: Summary statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Realizations

GDP 28 1.370 1.645 −4.973 0.647 2.287 3.632
Oil Price (USD/barrel) 28 51.078 32.755 12.850 20.262 71.430 111.630
Exchange Rate (USD/EUR) 28 1.205 0.144 0.896 1.120 1.313 1.471
World Trade 28 4.750 5.128 −12.724 2.190 7.756 13.895

Forecasts

GDP 1,460 1.538 1.275 −6.500 1.200 2.200 4.000
Oil Price (USD/barrel) 1,159 63.864 31.560 12.000 37.250 90.000 135.000
Exchange Rate (USD/EUR) 1,123 1.230 0.208 0.430 1.120 1.350 1.850
World Trade 740 4.892 3.586 −16.500 3.500 7.000 15.000

Forecast and assumptions errors

GDP 1,460 0.203 1.274 −5.000 −0.300 0.600 6.800
Oil Price (USD/barrel) 1,159 −0.085 14.875 −47.730 −5.125 2.530 69.040
Exchange Rate (USD/EUR) 1,123 0.001 0.168 −0.720 −0.040 0.030 0.740
World Trade 740 1.056 4.461 −25.900 −0.805 2.752 19.720

Note: Sample 1992–2019.
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B 2SLS models for instrument validity

As explained in Section 3, the importance of the estimates and the explanatory power of the

model specifications reported here are limited. However, the diagnostics, reported in the lower

part of the tables, guided our instrument choices. In particular, results for Weak Instrument test

and Wu-Hausman test are always displayed; whereas Sargan test may not be showed. This is

due to the fact that Sargan is used when testing for over-identifying restrictions (Sargan, 1958),

therefore, when the number of instruments is greater than the number of regressors. Therefore,

models that include one endogenous variable instrumented by a single instrument do not report

the Sargan test.

Table B1: 2SLS models for instrument validity (SAE)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: Instruments: Instruments:

both SAE WT SAE ER both SAE WT SAE OP both SAE ER SAE OP

SAE Oil Price 0.021∗∗∗ 0.021∗∗∗ -0.007 -0.003 0.003
(0.002) (0.002) (0.03) () (0.017) () () (0.005) ()

SAE Exchange Rates 2.294 -1645.07 -2071.53 -572.57 1.113
() (5.048) () (1736.019) (3161.814) (1702.808) () () (1.565)

SAE World Trade 0.117 0.06 0.111∗∗∗ 0.043 0.111∗∗∗

() () (0.123) () () (0.089) (0.005) (0.106) (0.005)

Constant -2.945∗∗∗ -3.031∗∗∗ 1.103 55.04 69.525 19.169 -0.388∗∗ 0.414 -0.43∗∗

(0.612) (0.642) (4.266) (56.194) (105.011) (56.722) (0.182) (1.263) (0.192)

Observations 656 655 655 656 655 655 656 655 655
R2 -2.174 -2.187 0.272 -517.735 -821.196 -62.145 0.695 0.626 0.694
Adjusted R2 -2.178 -2.197 0.27 -518.526 -823.706 -62.338 0.695 0.625 0.693

Weak instruments 0∗∗∗ 0∗∗∗ 0.736 0.639 0.512 0.736 0∗∗∗ 0.512 0∗∗∗

Wu-Hausman 0∗∗∗ 0∗∗∗ 0.637 0∗∗∗ 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.637 0∗∗∗

Sargan 0.648 0.814 0.475

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

First, 2SLS regression models that use SAE both as regressors and as instruments are ana-

lyzed (Table B1). Therefore, we have partial model specifications where two or just one regres-

sors are utilized, in both cases we have only one endogenous variable. Automatically excluding

the endogenous variables themselves from the possible instruments, the endogenous variable is

instrumented by each of the other two remaining SAE and by both of them together.

Table B2 shows models that utilize either the remaining days to target year-end, its square,

or both of them as instruments for SAE. This attempt’s purpose is not to demonstrate the

validity of daily horizon as an instrument for SAE, but rather to verify how they could influence

our diagnostics results when utilizing remaining days as a term to isolate the effects of other

suitable instruments. We have utilized this method for the understanding of the Sargan test in

Table 1 as well as Table B4, B6, B9 and B10.
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Table B2: 2SLS models for instrument validity (remaining days)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: Instruments: Instruments:

both remaining days remaining days2 both remaining days remaining days2 both remaining days remaining days2

SAE Oil Price 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0 0 0
(0.001) (0.001) (0.001) (0) (0) (0) (0.001) (0.001) (0.001)

SAE Exchange Rates 0.751 0.735 0.749 25.18 26.877 35.628 1.045 1.025 1.132
(1.428) (1.42) (1.427) (27.307) (27.969) (33.375) (1.557) (1.546) (1.617)

SAE World Trade 0.079∗∗∗ 0.079∗∗∗ 0.079∗∗∗ 0.084∗∗∗ 0.084∗∗∗ 0.085∗∗∗ 0.107∗∗∗ 0.106∗∗∗ 0.112∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.021) (0.021) (0.022)

Constant -0.25 -0.22 -0.246 -0.911 -0.968 -1.262 -0.379 -0.364 -0.445
(0.186) (0.188) (0.186) (0.933) (0.955) (1.138) (0.303) (0.301) (0.32)

Observations 654 654 654 654 654 654 654 654 654
R2 0.745 0.748 0.745 0.639 0.622 0.52 0.711 0.715 0.689
Adjusted R2 0.744 0.747 0.744 0.637 0.621 0.518 0.71 0.714 0.688

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.282 0.112 0.133 0.014∗∗ 0.004∗∗∗ 0.004∗∗∗

Wu-Hausman 0.135 0.245 0.143 0.276 0.245 0.143 0.22 0.245 0.143
Sargan 0.415 0.275 0.27

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B3: 2SLS models for instrument validity (LSAE)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: Instruments: Instruments:

LSAE OP LSAE ER LSAE WT LSAE OP LSAE ER LSAE WT LSAE OP LSAE ER LSAE WT

SAE Oil Price 0.05 0 0.898 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗ 0 0 0.001
(0.196) (0.001) (71.048) (0) (0) (0.001) (0) (0.002) (0)

SAE Exchange Rates -4.189 0.396 -100.082 -46.459 1.032 -118.092 0.305 0.789 0.571
(22.374) (1.688) (7961.037) (32.096) (1.944) (170.129) (1.786) (2.052) (1.958)

SAE World Trade -0.121 0.08∗∗∗ -3.674 0.075∗∗∗ 0.076∗∗∗ 0.072∗∗∗ 0.097∗∗∗ 0.108∗∗ 0.092∗∗∗

(0.787) (0.006) (296.836) (0.004) (0.002) (0.008) (0.01) (0.054) (0.01)

Constant -7.519 0.13 -134.129 1.24 -0.024 2.892 -0.24 -0.393 -0.206
(30.102) (0.254) (10623.293) (0.88) (0.156) (4.177) (0.202) (0.679) (0.195)

Observations 577 575 560 577 575 560 577 575 560
R2 -21.931 0.705 -7401.783 0.319 0.712 -1.432 0.67 0.62 0.674
Adjusted R2 -22.05 0.703 -7441.441 0.315 0.71 -1.445 0.669 0.618 0.672

Weak instruments 0.801 0∗∗∗ 0.99 0.055∗ 0∗∗∗ 0.458 0∗∗∗ 0.23 0∗∗∗

Wu-Hausman 0.026∗∗ 0.497 0.046∗∗ 0.026∗∗ 0.497 0.046∗∗ 0.026∗∗ 0.497 0.046∗∗

Sargan

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B3 introduces LSAE as an instrument for SAE. The Sargan test is not available due

to the number of instruments being equal to the number of endogenous regressors considered.

According to diagnostics results, we consider suitable instruments LSAE of oil price when con-

sidering SAE of exchange rate endogenous, but we do not report evidence of this later at Table

B4, and LSAE of oil price and LSAE of world trade when world trade is considered endogenous.

Table B4 utilizes the remaining days to target year-end as an additional instrument for SAE.

This is useful for obtaining the Sargan test results, which have not been shown in Table B3. We

find evidence that SAE of world trade could be instrumented, according to our diagnostics, by
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Table B4: 2SLS models for instrument validity (LSAE and remaining days)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: remaining days and Instruments: remaining days and Instruments: remaining days and

LSAE OP LSAE ER LSAE WT LSAE OP LSAE ER LSAE WT LSAE OP LSAE ER LSAE WT

SAE Oil Price 0.001∗∗ 0.001∗∗ 0.002∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0 0 0.001
(0.001) (0.001) (0.001) (0) (0) (0) (0) (0.001) (0)

SAE Exchange Rates -0.023 0.336 0.311 -19.344 1.005 -10.112 0.306 0.67 0.576
(1.677) (1.668) (1.871) (16.355) (1.944) (28.297) (1.787) (1.828) (1.962)

SAE World Trade 0.075∗∗∗ 0.075∗∗∗ 0.072∗∗∗ 0.075∗∗∗ 0.076∗∗∗ 0.074∗∗∗ 0.097∗∗∗ 0.1∗∗∗ 0.093∗∗∗

(0.004) (0.003) (0.004) (0.003) (0.002) (0.003) (0.01) (0.023) (0.01)

Constant -0.036 -0.049 -0.072 0.52 -0.023 0.254 -0.242 -0.288 -0.211
(0.189) (0.182) (0.194) (0.463) (0.156) (0.708) (0.202) (0.323) (0.195)

Observations 577 575 560 577 575 560 577 575 560
R2 0.708 0.711 0.702 0.641 0.712 0.687 0.67 0.663 0.673
Adjusted R2 0.706 0.71 0.701 0.639 0.71 0.686 0.668 0.661 0.671

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.024∗∗ 0∗∗∗ 0.277 0∗∗∗ 0.029∗∗ 0∗∗∗

Wu-Hausman 0.694 0.655 0.538 0.187 0.514 0.703 0.025∗∗ 0.271 0.038∗∗

Sargan 0.027∗∗ 0.303 0.046∗∗ 0.101 0.36 0.045∗∗ 0.869 0.848 0.779

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

LSAE of oil price and LSAE of world trade. However, LSAE of oil price does not seem to be a

sound instrument for SAE of exchange rate anymore.

Table B5: 2SLS models for instrument validity (ASAE)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: Instruments: Instruments:

ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT

SAE Oil Price 0.001∗∗∗ 0 0.02∗∗∗ 0.001 0.001∗∗∗ 0 0 -0.001 0
(0) (0.006) (0.005) (0.002) (0) (0.007) (0.001) (0.013) (0)

SAE Exchange Rates 0.337 -0.301 0.888 -261.999 -0.734 -1103.649 0.752 0.245 0.646
(1.468) (1.838) (4.851) (852.583) (2.463) (2463.767) (1.633) (4.966) (1.579)

SAE World Trade 0.082∗∗∗ 0.087∗∗∗ 0.008 0.074∗∗ 0.083∗∗∗ 0.042 0.109∗∗∗ 0.125 0.105∗∗∗

(0.002) (0.023) (0.02) (0.035) (0.002) (0.114) (0.013) (0.284) (0.003)

Constant -0.128 0.064 -2.778∗∗∗ 7.996 -0.073 34.058 -0.415∗ -0.594 -0.378∗∗

(0.149) (0.824) (0.825) (26.298) (0.154) (76.354) (0.231) (3.511) (0.161)

Observations 647 635 641 647 635 641 647 635 641
R2 0.754 0.75 -1.659 -11.381 0.758 -214.248 0.701 0.623 0.718
Adjusted R2 0.753 0.749 -1.671 -11.438 0.757 -215.255 0.7 0.622 0.717

Weak instruments 0∗∗∗ 0.291 0∗∗∗ 0.756 0∗∗∗ 0.654 0∗∗∗ 0.807 0∗∗∗

Wu-Hausman 0.029∗∗ 0.856 0∗∗∗ 0.029∗∗ 0.856 0∗∗∗ 0.029∗∗ 0.856 0∗∗∗

Sargan

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B5 is a one-instrument version of Table 1, where only ASAE, one at a time, is taken

in consideration for instrumenting SAE. We find evidence of possible instruments for SAE of

oil price and for SAE of world trade. For both of them, ASAE of oil price and ASAE of world

trade show small p-values for Weak Instruments and Wu-Hausman diagnostics. These results

are also coherent and compatible with the ones shown in Table 1.
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Table B6: 2SLS models for instrument validity (squared horizon)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: remaining days2 and Instruments: remaining days2 and Instruments: remaining days2 and

ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT ASAE OP ASAE ER ASAE WT

SAE Oil Price 0.001∗∗∗ 0.002∗∗∗ 0.006∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗ 0 0 0
(0) (0.001) (0.001) (0) (0) (0.001) (0.001) (0.001) (0)

SAE Exchange Rates 0.337 -0.509 0.432 14.439 -0.762 -94.441 0.757 -0.02 0.646
(1.468) (1.73) (1.867) (27.177) (2.463) (70.477) (1.634) (1.899) (1.579)

SAE World Trade 0.082∗∗∗ 0.08∗∗∗ 0.064∗∗∗ 0.084∗∗∗ 0.083∗∗∗ 0.08∗∗∗ 0.11∗∗∗ 0.108∗∗∗ 0.105∗∗∗

(0.002) (0.004) (0.004) (0.003) (0.002) (0.007) (0.012) (0.022) (0.003)

Constant -0.128 -0.211 -0.769∗∗∗ -0.525 -0.073 2.829 -0.419∗ -0.387 -0.378∗∗

(0.149) (0.184) (0.226) (0.851) (0.154) (2.215) (0.222) (0.31) (0.161)

Observations 647 635 641 647 635 641 647 635 641
R2 0.754 0.752 0.606 0.72 0.758 -0.827 0.7 0.71 0.718
Adjusted R2 0.753 0.751 0.604 0.718 0.757 -0.836 0.699 0.709 0.717

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.341 0∗∗∗ 0.353 0∗∗∗ 0.018∗∗ 0∗∗∗

Wu-Hausman 0.029∗∗ 0.223 0∗∗∗ 0.579 0.843 0∗∗∗ 0.015∗∗ 0.206 0∗∗∗

Sargan 0.29 0.731 0∗∗∗ 0.027∗∗ 0.21 0∗∗∗ 0.954 0.946 0.93

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B6 substitutes the forecast horizon in days, used in Table 1, with its square. As a

second check for our choice of instruments that will be used in DML model specifications, we do

not observe any differences from Table 1. SAE of oil price has one valid instrument represented

by ASAE of oil price (and horizon squared in days), while SAE of world trade has two valid

instruments, ASAE of oil price and ASAE of world trade (both to be considered jointly with

horizon squared in days for Table B6).

Table B7: 2SLS models for instrument validity (Multiple Instruments)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: ASAE Instruments: ASAE Instruments: ASAE

OP and ER OP and WT ER and WT OP and ER OP and WT ER and WT OP and ER OP and WT ER and WT

SAE Oil Price 0.002∗∗∗ 0.001∗∗∗ 0.018∗∗∗ 0.001∗∗∗ 0.001 0.001∗∗∗ 0 0 0
(0) (0) (0.004) (0) (0.006) (0) (0.001) (0) (0)

SAE Exchange Rates -0.821 0.285 -3.001 -1.66 -878.285 -2.016 -0.378 0.645 -0.52
(1.723) (1.469) (5.384) (2.505) (1753.678) (2.512) (1.92) (1.579) (1.857)

SAE World Trade 0.082∗∗∗ 0.083∗∗∗ 0.014 0.083∗∗∗ 0.05 0.083∗∗∗ 0.11∗∗∗ 0.105∗∗∗ 0.105∗∗∗

(0.002) (0.002) (0.018) (0.002) (0.084) (0.002) (0.013) (0.003) (0.003)

Constant -0.121 -0.121 -2.569∗∗∗ -0.061 27.084 -0.067 -0.412∗ -0.378∗∗ -0.371∗∗

(0.149) (0.15) (0.757) (0.154) (54.369) (0.155) (0.232) (0.161) (0.162)

Observations 634 641 628 634 641 628 634 641 628
R2 0.758 0.756 -1.319 0.759 -135.423 0.76 0.703 0.718 0.722
Adjusted R2 0.757 0.755 -1.33 0.757 -136.062 0.758 0.702 0.717 0.72

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.882 0∗∗∗ 0∗∗∗ 0∗∗∗ 0∗∗∗

Wu-Hausman 0.027∗∗ 0.289 0∗∗∗ 0.632 0∗∗∗ 0.53 0.026∗∗ 0∗∗∗ 0∗∗∗

Sargan 0.653 0∗∗∗ 0.232 0.028∗∗ 0.797 0∗∗∗ 0.796 0.733 0.808

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B7 includes two ASAE at a time for instrumenting one SAE. As for previous tables,

we do not find any evidence of valid instruments for SAE of exchange rate. On the other hand,

we do have valid instruments for SAE of oil price, when considering a combination of oil price -
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exchange rate ASAE and of exchange rate - world trade ASAE, and for SAE of world trade, in

this case for any combination of two ASAE among the three considered.

Table B8: 2SLS models for instrument validity (LASAE)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: Instruments: Instruments:

LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT

SAE Oil Price 0.408 0.002 -0.015 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗ 0.002 0.001∗∗

(21.26) (0.002) (0.067) (0) (0) (0) (0) (0.002) (0)

SAE Exchange Rates -13.668 -1.669 0.722 -24.517 -1.949 -32.235 0.325 -1.702 0.277
(732.04) (2.015) (5.385) (21.432) (2.775) (57.188) (1.645) (2.084) (1.636)

SAE World Trade -1.549 0.079∗∗∗ 0.146 0.08∗∗∗ 0.08∗∗∗ 0.079∗∗∗ 0.09∗∗∗ 0.073∗ 0.086∗∗∗

(85.195) (0.008) (0.27) (0.003) (0.002) (0.004) (0.008) (0.041) (0.008)

Constant -60.878 -0.094 2.395 0.646 -0.029 0.855 -0.165 0.063 -0.124
(3180.161) (0.33) (10.139) (0.62) (0.157) (1.618) (0.18) (0.542) (0.18)

Observations 608 596 600 608 596 600 608 596 600
R2 -1316.791 0.742 -1.377 0.639 0.743 0.567 0.731 0.738 0.738
Adjusted R2 -1323.294 0.741 -1.389 0.637 0.742 0.565 0.73 0.737 0.736

Weak instruments 0.985 0.004∗∗∗ 0.798 0.029∗∗ 0∗∗∗ 0.369 0∗∗∗ 0.173 0∗∗∗

Wu-Hausman 0.174 0.846 0.465 0.174 0.846 0.465 0.174 0.846 0.465
Sargan

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B8 introduces the lagged version of ASAE for instrumenting purposes (LASAE). The

Sargan test is not displayed, and we do not observe, as stated by the diagnostics, any valid

instrument for any of the three SAEs considered.

Table B9: 2SLS models for instrument validity (Lagged Instruments, Remaining days)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: horizon in days and Instruments: horizon in days and Instruments: horizon in days and

LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT

SAE Oil Price 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗ 0.001 0.001∗∗

(0.001) (0.001) (0.001) (0) (0) (0) (0) (0.001) (0)

SAE Exchange Rates 0.147 -1.743 0.167 -6.31 -2.056 9.113 0.324 -1.314 0.291
(1.622) (1.952) (1.635) (13.156) (2.773) (23.564) (1.645) (2.019) (1.638)

SAE World Trade 0.079∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.081∗∗∗ 0.09∗∗∗ 0.094∗∗∗ 0.087∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002) (0.008) (0.02) (0.007)

Constant -0.112 -0.132 -0.155 0.14 -0.027 -0.307 -0.164 -0.211 -0.134
(0.187) (0.184) (0.192) (0.394) (0.157) (0.679) (0.18) (0.291) (0.179)

Observations 608 596 600 608 596 600 608 596 600
R2 0.737 0.74 0.737 0.732 0.743 0.727 0.731 0.728 0.737
Adjusted R2 0.736 0.739 0.735 0.731 0.742 0.725 0.73 0.726 0.736

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.009∗∗∗ 0∗∗∗ 0.223 0∗∗∗ 0.014∗∗ 0∗∗∗

Wu-Hausman 0.509 0.351 0.383 0.616 0.803 0.698 0.176 0.468 0.392
Sargan 0.174 0.89 0.448 0.158 0.361 0.286 0.507 0.558 0.437

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B9 and Table B10, respectively, add the remaining days to the target year-end and

their squared version as instruments for SAE. This allows us to observe also Sargan test results.

However, when considering diagnostics for these two tables, we always acknowledge the absence

of any valid instruments. In particular, for all the different model specifications we cannot reject

the null hypothesis of the Wu-Hausman test.

A-9



Advancing Forecast Accuracy Analysis

Table B10: 2SLS models for instrument validity (Lagged Instruments, Remaining days
squared)

Dependent variable: SFE GDP

SAE Oil Price endogenous SAE Exchange Rates endogenous SAE World Trade endogenous

Instruments: remaining days2 and Instruments: remaining days2 and Instruments: remaining days2 and

LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT LASAE OP LASAE ER LASAE WT

SAE Oil Price 0.002∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗ 0 0.001∗∗

(0.001) (0.001) (0.001) (0) (0) (0) (0) (0.001) (0)

SAE Exchange Rates 0.143 -1.772 0.162 -4.013 -2.078 13.659 0.318 -1.244 0.293
(1.624) (1.956) (1.64) (12.792) (2.773) (24.153) (1.643) (2.059) (1.639)

SAE World Trade 0.078∗∗∗ 0.078∗∗∗ 0.077∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.081∗∗∗ 0.09∗∗∗ 0.098∗∗∗ 0.087∗∗∗

(0.004) (0.003) (0.004) (0.002) (0.002) (0.003) (0.008) (0.021) (0.007)

Constant -0.127 -0.148 -0.174 0.076 -0.027 -0.435 -0.16 -0.26 -0.135
(0.183) (0.182) (0.189) (0.384) (0.157) (0.696) (0.179) (0.305) (0.18)

Observations 608 596 600 608 596 600 608 596 600
R2 0.737 0.739 0.735 0.736 0.743 0.71 0.732 0.718 0.737
Adjusted R2 0.735 0.738 0.734 0.735 0.742 0.709 0.731 0.716 0.736

Weak instruments 0∗∗∗ 0∗∗∗ 0∗∗∗ 0.007∗∗∗ 0∗∗∗ 0.22 0∗∗∗ 0.019∗∗ 0∗∗∗

Wu-Hausman 0.391 0.258 0.27 0.741 0.795 0.555 0.192 0.37 0.387
Sargan 0.175 0.847 0.446 0.117 0.262 0.251 0.354 0.493 0.305

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

A-10



Advancing Forecast Accuracy Analysis

C OLS, 2SLS, DML comparison

Table C1: OLS, 2SLS, DML comparison: Biasedness

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.001∗∗∗ 0.083∗∗∗

(0) (0.002)

2SLS —

ASAE OP
0.001∗∗∗ 0.109∗∗∗

(0) (0.013)

ASAE WT
— 0.105∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.105∗∗∗

— (0.003)

DML

Random Forest

ASAE OP
0 0.108∗∗∗

(0) (0.025)

ASAE WT
— 0.104∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.104∗∗∗

— (0.004)

Trees

ASAE OP
0.002∗∗∗ 0.103∗∗

(0.001) (0.043)

ASAE WT
— 0.104∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.101∗∗∗

— (0.004)

Boosting

ASAE OP
0.001∗ 0.106∗∗∗

(0) (0.024)

ASAE WT
— 0.104∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.109∗∗∗

— (0.004)

Lasso

ASAE OP
0.001 0.16

(0) (0.185)

ASAE WT
— 0.107∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.106∗∗∗

— (0.004)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C2: OLS, 2SLS, DML comparison: Remaining days

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.001∗∗∗ 0.083∗∗∗

(0) (0.002)

2SLS —

ASAE OP
0.001∗∗∗ 0.108∗∗∗

(0) (0.015)

ASAE WT
— 0.105∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.105∗∗∗

— (0.003)

DML

Random Forest

ASAE OP
0 0.112∗∗∗

(0) (0.021)

ASAE WT
— 0.106∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.106∗∗∗

— (0.004)

Trees

ASAE OP
0.002∗∗∗ 0.114∗∗∗

(0.001) (0.044)

ASAE WT
— 0.102∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.102∗∗∗

— (0.004)

Boosting

ASAE OP
0.001 0.1∗∗∗

(0) (0.019)

ASAE WT
— 0.103∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.105∗∗∗

— (0.004)

Lasso

ASAE OP
0.001 0.167

(0) (0.184)

ASAE WT
— 0.106∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.105∗∗∗

— (0.004)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C3: OLS, 2SLS, DML comparison: Institutional FE

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.001∗∗∗ 0.083∗∗∗

(0) (0.002)

2SLS —

ASAE OP
0.002∗∗∗ 0.113∗∗∗

(0) (0.015)

ASAE WT
— 0.106∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.106∗∗∗

— (0.003)

DML

Random Forest

ASAE OP
0.001 0.114∗∗∗

(0.001) (0.018)

ASAE WT
— 0.106∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.106∗∗∗

— (0.004)

Trees

ASAE OP
0.002∗∗∗ 0.1∗∗

(0.001) (0.047)

ASAE WT
— 0.104∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.101∗∗∗

— (0.004)

Boosting

ASAE OP
0.001 0.087∗∗∗

(0) (0.023)

ASAE WT
— 0.104∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.109∗∗∗

— (0.004)

Lasso

ASAE OP
0.001 0.068

(0) (0.141)

ASAE WT
— 0.108∗∗∗

— (0.003)

ASAE OP and ASAE WT
— 0.108∗∗∗

— (0.004)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C4: OLS, 2SLS, DML comparison: Year FE

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.002∗∗∗ 0.037∗∗∗

(0) (0.003)

2SLS —

ASAE OP
0.003∗∗∗ 0.156∗∗

(0) (0.068)

ASAE WT
— 0.137∗∗∗

— (0.027)

ASAE OP and ASAE WT
— 0.139∗∗∗

— (0.027)

DML

Random Forest

ASAE OP
0.002∗∗ 0.108∗∗∗

(0.001) (0.02)

ASAE WT
— 0.107∗∗∗

— (0.009)

ASAE OP and ASAE WT
— 0.107∗∗∗

— (0.008)

Trees

ASAE OP
0.002∗∗∗ 0.094∗∗∗

(0.001) (0.029)

ASAE WT
— 0.135∗∗∗

— (0.037)

ASAE OP and ASAE WT
— 0.158∗∗∗

— (0.049)

Boosting

ASAE OP
0.002∗∗∗ 0.109∗∗∗

(0.001) (0.022)

ASAE WT
— 0.094∗∗∗

— (0.01)

ASAE OP and ASAE WT
— 0.09∗∗∗

— (0.015)

Lasso

ASAE OP
0.001 0.079∗∗∗

(0.001) (0.016)

ASAE WT
— 0.083∗∗∗

— (0.007)

ASAE OP and ASAE WT
— 0.096∗∗∗

— (0.007)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C5: OLS, 2SLS, DML comparison: Remaining days, Inst. FE and Year FE

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.001∗∗∗ 0.034∗∗∗

(0) (0.003)

2SLS —

ASAE OP
[m] [m]

([m]) ([m])

ASAE WT
— [m]

— ([m])

ASAE OP and ASAE WT
— [m]

— ([m])

DML

Random Forest

ASAE OP
0.001 0.114∗∗∗

(0.001) (0.021)

ASAE WT
— 0.106∗∗∗

— (0.007)

ASAE OP and ASAE WT
— 0.105∗∗∗

— (0.007)

Trees

ASAE OP
0.002∗∗∗ 0.098∗∗∗

(0.001) (0.031)

ASAE WT
— 0.136∗∗∗

— (0.039)

ASAE OP and ASAE WT
— 0.141∗∗∗

— (0.04)

Boosting

ASAE OP
0.002∗∗∗ 0.105∗∗∗

(0.001) (0.021)

ASAE WT
— 0.105∗∗∗

— (0.012)

ASAE OP and ASAE WT
— 0.096∗∗∗

— (0.016)

Lasso

ASAE OP
0.001 0.063∗∗∗

(0.001) (0.017)

ASAE WT
— 0.087∗∗∗

— (0.008)

ASAE OP and ASAE WT
— 0.071∗∗∗

— (0.01)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The symbol m placed there stands for signaling the problem
we have just described.
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Table C6: OLS, 2SLS, DML comparison: Remaining days, Inst. FE and Year FE, and
interactions

Model specification
SAE Oil Price SAE World Trade

Technique Learning method Instrument

OLS — —
0.002∗∗∗ 0.031∗∗∗

(0) (0.003)

2SLS —

ASAE OP
[m] [m]

([m]) ([m])

ASAE WT
— [m]

— ([m])

ASAE OP and ASAE WT
— [m]

— ([m])

DML

Random Forest

ASAE OP
0.003∗∗∗ 0.113∗∗∗

(0.001) (0.01)

ASAE WT
— 0.107∗∗∗

— (0.006)

ASAE OP and ASAE WT
— 0.108∗∗∗

— (0.005)

Trees

ASAE OP
0.002∗∗∗ 0.093∗∗∗

(0.001) (0.029)

ASAE WT
— 0.112∗∗∗

— (0.004)

ASAE OP and ASAE WT
— 0.139∗∗∗

— (0.039)

Boosting

ASAE OP
0.002∗∗ 0.102∗∗∗

(0.001) (0.018)

ASAE WT
— 0.1∗∗∗

— (0.009)

ASAE OP and ASAE WT
— 0.09∗∗∗

— (0.01)

Lasso

ASAE OP
0 -0.089

(0) (0.095)

ASAE WT
— 0.105∗∗∗

— (0.005)

ASAE OP and ASAE WT
— 0.104∗∗∗

— (0.005)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: The table presents regression results for SFE GDP as the dependent variable, with SAE Oil Price and SAE
World Trade as independent variables. Various instruments and estimation techniques are applied, as detailed in
the different rows. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The symbol m placed there stands for signaling the problem
we have just described.
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