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How do beliefs on admission probability influence application choices? In this  
study, we empirically investigate whether and how admission probability is re-
flected in application choices in a centralized admission system. We exploit a novel 
setting of a dynamic deferred acceptance mechanism as employed in Croatia with 
hourly information updates and simultaneous application choices. This setting  
allows us to explore within-applicant strategic adjustments as a reaction to chan-
ging signals on admission probability. We show in an RDD analysis that applicants 
react to negative signals on admission probability with an increased propensity to 
adjust their application choices by 11-23%. Additionally, we show how application 
strategies evolve over time, while applicants learn about their admission probabili-
ty. The group most-at-risk to remain unmatched improves their application choices 
by applying to programs with a higher admission probability towards the applica-
tion deadline. Yet, we also identify a popular and potentially harmful strategy of 
applying to safer programs before applying to more risky “reach” programs. About 
a quarter of applicants have the potential to improve their application choices by 
resorting their application choices.

Keywords: belief updating, college admission, deferred acceptance, higher education, 
preference misrepresentation 
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1 Introduction

The decision of where and what to study strongly influences future income prospects

(Altonji et al., 2014). Consequently, poor college application choices can have detrimental

long-run consequences. One factor contributing to poor application choices are information

frictions (Bettinger et al., 2012; Dynarski et al., 2021; Hoxby and Turner, 2015). Removing

such frictions can support students in making better application choices and ultimately

gain admission to a study program that suits their interests and abilities. Centralized

application systems mitigate information frictions by offering easily accessible information

on program characteristics, admission criteria and often a proxy for admission probability.

Still, it remains unclear whether applicants are able to correctly process this information,

thereby making better application choices.

According to the canonical school choice model by Abdulkadiroğlu and Sönmez

(2003), applicants in a centralized admission system based on a Deferred Acceptance

(DA) algorithm fare best when ranking their application choices according to their true

preferences. Yet, a growing literature shows that applicants incorporate admission prob-

ability in their choices and thus misrepresent their preferences. For one part, this can be

explained with biased beliefs on admission probability. Applicants over- or underestimate

their admission chances (Arteaga et al., 2022; Larroucau et al., 2024) and consequently

apply to too few programs or omit feasible programs from their application. For another

part, applicants deviate from classical fully rational preferences, signaling a preference for

study programs with higher admission probability but lower returns (Artemov et al., 2020;

Hakimov and Kübler, 2021; Hassidim et al., 2021; Shorrer and Sóvágó, 2024). While the

former bias can be addressed by providing more accurate information about admission

probabilities, the latter behavior persists and may lead to significant application mistakes

that result in a sub-optimal admission outcome.

In this study, we investigate how beliefs on admission probability shape application

strategies, how applicants react to information on admission probability and whether more

accurate information encourages strategic adjustments. We exploit the unique setting of

a dynamic DA mechanism that is employed to assign applicants to study programs in

Croatia. Here, applicants observe a proxy for admission probability in the form of prelim-

inary admission outcomes for all ranked programs. At each full hour, these preliminary

admission outcomes are updated based on revised application choices. Compared to the

proxy on admission probability provided in other (static) systems, the proxy provided in

Croatia can be regarded as more informative as it is based on application choices and

competition of the current cohort. Yet, the proxy fluctuates as a result of each applicants’

own and their competitions’ adjustments of the application choices and should thus be

regarded as a fuzzy signal on admission probability. This setting allows us to investi-

gate within-applicants adjustments of the application strategy to fluctuating signals on

admission probability.

In the first part of our study, we explore the dynamic nature of the Croatian sys-

tem, which distinguishes it from the more commonly applied static system. We show that

the admission cutoff of most programs declines over time, making it easier to be admitted

at the application deadline than the prior signals on admission probability indicate. The

cutoff score of the average program fluctuates in about 30% of hours by 3.45 points. The
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cutoff score of larger programs fluctuates more frequently, which is driven by the larger

number of applicants above the cutoff whose adjustments induce a cutoff score fluctuation.

Meanwhile, the magnitude of fluctuations decreases in the programs’ quota. These fluc-

tuations are driven by adjustments of application choices, which are most frequent right

after the first preliminary admission outcomes are published and towards the application

deadline.

In the second part of our study, we leverage a Regression-Discontinuity-Design

(RDD) based on sharp (preliminary) admission cutoffs to show that applicants consider

their beliefs on admission probability in their application choices. Applicants start the

application process with their initial beliefs on admission probability and update their

beliefs to the signals they receive. The strongest signal for admission probability is whether

applicants are tentatively above or below the sharp admission cutoff. Thus, we consider

applicants above the cutoff as receiving a positive signal, while applicants below the cutoff

receive a negative signal on admission probability. As cutoff scores fluctuate, admission

probability for applicants just around the admission cutoff is highly comparable. This

implies that adjusting the application choices as a response to a negative signal is not

justified by a lower admission probability. Still, we observe that applicants who receive a

negative signal on admission probability have a 11-23% higher probability to adjust their

application choices. In particular, we find that when applicants receive a negative signal,

the probability that they omit the affected program from their application is 8-14% higher

compared to applicants who receive a positive signal. This shows that beliefs on admission

probability are influenced by the information signal and shape application choices.

In the third part, we broaden our analysis from one program to the full applica-

tion strategy, that is, the composition and ordering of study programs in the application

choices. We investigate how admission probability is reflected in the application strategy

and whether this changes over time. To this end, we compute a measure of admission

probability for each applicant and program by simulating admission cutoffs for random

samples of applicants. Based on this applicant × program specific measure we determine

for each hourly application strategy each applicants’ risk of not being admitted to any

ranked program. In each cohort, 8-14% of applicants have a particularly high initial risk

to remain unmatched. As they start receiving information signals on admission probabil-

ity, this group of applicants manages to reduce this risk by up to 20 pp. They achieve

this by swapping programs with a low admission probability for programs with a higher

admission probability, rather than by extending their (relatively short) rank-ordered list

(ROL) of study programs. The large majority of applicants has a particularly low ini-

tial risk to remain unmatched of only 0-1%. Although this risk remains low, also these

applicants adjust their application strategy with respect to admission probability. While

initially they ranked more risky ”reach” programs in the top-3 positions, this quickly

changes as they receive signals on admission probability. At the application deadline, they

rank programs with a higher admission probability on the top-3 ranks and more risky

programs on the lower ranks. Under the assumption that applicants have a preference

for competitive programs, which is supported by the initial application choices, this con-

tradicts the theory of optimal application strategies (Abdulkadiroğlu and Sönmez, 2003;

Ali and Shorrer, 2025), according to which the ranked programs should be ranked accord-
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ing to one’s true preferences. Yet, this behavior has also been observed in experiments

(Y. Chen and Sönmez, 2006; Pais and Pintér, 2008) and fits the behavioral concept of

expectation-based loss-aversion (Dreyfuss et al., 2022).

Additionally, we combine the application data with survey data on applicants’

reported top-3 most preferred programs and expected admission probability thereto to

investigate whether beliefs on admission probability are reflected in the initial application

choices. In the previous exercise we had to assume that applicants have a preference for

more competitive programs and correctly assess their admission probability. Now, we

observe applicants true preferences and their subjective beliefs on admission probability

and can compare these to their initial application choices prior receiving any signal on their

admission chances. While about 30% of applicants apply according to their reported true

preferences, 17% of applicants rank none of their reported true preferences in their initial

application choices. These strategies are strongly related to applicants’ expected risk of

not being admitted to any of their top-3 truly-preferred programs. Among the group with

a particularly high expected risk, the share of applicants who do not rank any of their true

preferences is significantly higher, at 40%. Meanwhile, 35% of applicants in the group with

a particularly low expected risk rank their initial application choices according to their true

preferences. Additionally, subjective beliefs on admission probability are reflected in the

initial application choices of 26% of applicants. Of those, more than 80% omit programs

for which they expect admission probability to be lower. This shows that already in the

initial application choices applicants misrepresent their preferences. In particular, they

do so by omitting programs with a lower expected admission probability. In the dynamic

system the initial application choices are not binding. Thus, applicants have no reason to

omit any of their most preferred study programs, even if they expect admission probability

to be low. The cost of this application strategy is a missed opportunity of receiving an

information signal and, thus, learning about their true admission probability.

In the last part of our study, we investigate whether the observed application strate-

gies, i.e., sorting by admission probability and omitting programs with a low admission

probability, are consequential for applicants’ admission outcome. To this end, we simulate

two counterfactual scenarios by replicating the assignment mechanism based on alternative

application choices. For the first simulation we resort applicants final set of applications

by admission probability in ascending order such that they apply to risky programs first.

By that, we assume that applicants have a preference for the most competitive ranked

program. Comparing the simulated and observed admission outcome we find that about a

quarter of applicants could be admitted to a more competitive program, simply be resort-

ing their applications. For the second simulation we compose counterfactual applications

from the ten most competitive programs an applicant ever considers to assess the con-

sequence of omitting programs with lower admission probabilities. In this counterfactual

scenario, 13% of applicants are admitted to a more competitive program compared to the

observed admission outcome. Yet, the share of applicants who are not admitted at all is

18 pp higher than in the observed scenario. In line with portfolio choice (Ali and Shorrer,

2025), this shows that applying only to the most preferred but also most risky programs

is not necessarily an optimal strategy in a constrained choice setting.

Overall, we show that beliefs on admission probability are reflected in applica-
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tion choices. We identify two popular strategies, a) omitting programs with a low(er)

admission probability and b) sorting ranked programs by admission probability. The for-

mer strategy keeps applicants from learning about their true admission probability in the

beginning of the adjustment period and from being admitted to a potentially feasible pro-

gram at the application deadline. The latter strategy results in applicants being admitted

to less-competitive than possible programs and could be corrected at no risk. Similar

application strategies are attributed in the literature to a behavioral bias referred to as

expectation-based loss aversion (Dreyfuss et al., 2022; Kleinberg et al., 2024; Meisner and

Von Wangenheim, 2023). Whether the Croatian setting enhances this behavioral bias

remains to be investigated.

The Croatian system is unique in its’ way of providing up-to-date and applicant-

specific information on admission probability. We show that applicants overreact to this

information as they adjust their application choices to negative signals besides strictly

positive admission probabilities. This is true in particular since admission cutoff scores

decline over the adjustment period, implying that omitting a program in response to an

early negative signal may result in applicants not applying to preferred and (unexpectedly)

feasible programs. Thus, although applicants in Croatia are more informed than appli-

cants in the more commonly applied static system, the fluctuating signal on admission

probability cannot fully eliminate information bias due to applicants misinterpreting the

information. Yet, we also show that applicants who initially make the most risky choices

improve their application choices over time. On them, the information signal seems to

have the desired information-bias-correcting effect.

With our research we contribute to three strands of literature. First, we contribute

to the literature that demonstrates a gap between theoretically optimal and observed ap-

plication strategies in strategy-proof school choice mechanisms. According to the canonical

school choice model by Abdulkadiroğlu and Sönmez (2003), applicants in a strategy-proof

school choice mechanism should always apply according to their true preferences. Al-

though strategy-proofness dissolves when applicants are constrained in the number of

programs they are allowed to rank (Calsamiglia et al., 2010; Haeringer and Klijn, 2009),

it remains an optimal strategy to rank the constrained set of selected programs accord-

ing to one’s true preferences (Ali and Shorrer, 2025). Yet, experimental (see Hakimov

and Kübler, 2021 for an overview of laboratory experiments; L. Chen and Pereyra, 2019;

Rees-Jones and Skowronek, 2018; Ye, 2023) and empirical evidence (Artemov et al., 2020;

Hassidim et al., 2021; Larroucau and Rios, 2019; Shorrer and Sóvágó, 2024) showing that

applicants deviate from truthtelling by following application strategies is growing. In par-

ticular, applicants base their application strategy on admission probability. In experiments

participants rank options with a lower payoff but higher chances of assignment above op-

tions with a higher payoff but lower chances. In empirical settings, true preferences are

harder to identify. For this reason, empirical studies in this literature focus on identi-

fying clearly dominated choices such as ranking a program without financial aid above

the same program but with financial aid (Artemov et al., 2020; Hassidim et al., 2021;

Shorrer and Sóvágó, 2024). Among the various behavioral explanations for this behavior

(Rees-Jones and Shorrer, 2023) , expectation-based loss aversion (Dreyfuss et al., 2022)

is a particularly prominent one. By misrepresenting their preferences, applicants lower
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the reference point for expectations and thus mitigate potential disappointment (Meisner

and Von Wangenheim, 2023). Introducing reference dependent preferences in a model of

application choices can explain the application behavior observed in experiments (Drey-

fuss et al., 2022). We contribute to this literature by providing empirical evidence for

strategic application choices based on admission probability. In contrast to other studies,

our unique setting allows us to investigate a broader set of application strategies for the

full universe of applicants rather than restricting the analysis to one particular clearly

dominated strategy.

Second, we contribute to the literature investigating information interventions in

centralized admission systems. This literature shows that applicants have biased beliefs

on admission probability. Here, a particular focus is on overconfident applicants, who

submit truncated applications and thereby risk to remain unmatched (Arteaga et al.,

2022; Larroucau et al., 2024). Providing information to applicants in experiments in

the field, Arteaga et al. (2022) and Larroucau et al. (2024) show that applicants update

their beliefs on admission probability and improve their application choices accordingly.

Bobba and Frisancho (2022) model the belief-updating process and show that upward-

biased beliefs on students position in the skill distribution can be corrected with applicant-

specific information on test performance. We contribute to this literature by showing how

applicants react to an applicant-specific, up-to-date but fluctuating information signal on

admission probability provided within the application system. In line with the literature,

we find that the information can encourage applicants at risk of remaining unmatched to

make better application choices. Yet, we also show that the provided information cannot

improve all applicants’ choices. In the Croatian setting, applicants tend to overreact to

the provided information signal, potentially due to misinterpreting it. This emphasizes

the importance of how information is provided.

Third, we contribute to the growing literature on dynamic school choice mecha-

nisms, in which applicants interact with the application platform during the assignment

process. By that, dynamic systems allow applicants to gather information on their tenta-

tive admission outcomes, real-time cutoff scores or their competitors’ application choices.

The majority of this literature investigates properties of dynamic mechanisms in labo-

ratory experiments (Bó and Hakimov, 2020; Gong and Liang, 2025; Klijn et al., 2019;

Stephenson, 2022) or theoretically (Grenet et al., 2022). Most literature finds that dy-

namic mechanisms enhance truthtelling compared to static systems due to the enhanced

information setting of applicants (Bó and Hakimov, 2020), particularly in highly com-

plex choice settings (Gong and Liang, 2025). Empirical literature on dynamic application

systems is scarce, potentially due to few applications of dynamic systems worldwide (see

L. Chen et al. (2022) for an overview). The empirically-investigated real-world applica-

tions of dynamic school choice mechanisms are sequential mechanisms, where applicants

apply in groups, starting with the highest scoring applicants. This allows lower-scoring

applicants to gain valuable information on admission probability before making their final

application choices. In Tunisia, this information enhances truthtelling (Luflade, 2017),

but in Inner Mongolia the theoretical benefits of the system (Gong and Liang, 2025) do

not translate into practice (Kang et al., 2023). The Croatian dynamic admission system is

a novel setting in which applicants make simultaneous choices (rather then sequentially)
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while learning about their admission probability. Thus, we contribute to the literature on

dynamic school choice mechanisms by providing evidence for application strategies in a

yet-unstudied dynamic setting.

The remainder of the paper is structured in the following way: In Section 2 we

provide a detailed summary of the Croatian application system. In Section 3, we describe

the data. In Section 4, we provide descriptive statistics on the dynamics of the Croatian

system, which distinguishes it from other application systems. In Section 5 we provide

the results of our RDD analysis and in Section 6 we show how applicants develop their

application strategy over time while learning about admission probability. Last, in Section

7, we investigate the consequences of following the application strategies we identify in

the previous sections. Section 8 concludes.

2 The Repeated DA in Croatia

In Croatia, more than 30,000 high school graduates apply for higher education each year.

They choose among more than 700 study programs that are offered by public and private

universities and universities of applied sciences throughout the country. Here, a study

program is defined as a major in a specific institution. As part of the high school gradua-

tion they participate in a centralized school leaving examination, henceforward the state

exam, which is held nationwide. All students take three mandatory subject tests in Math,

Croatian and a foreign language and can additionally opt for examination in multiple

other subjects.

On a central online application platform, applicants rank up to 10 study programs

to which they want to apply. Based on applicants’ ranking of study programs, their

rank-ordered list (ROL), a Deferred Acceptance (DA) mechanism is employed to match

applicants to study programs. The DA mechanism matches each applicant to the highest-

ranked program for which they can compete with the other applicants. Each applicant is

admitted to at most one study program from their ROL or remains unmatched.

The underlying priority criteria is a score that is composed of weighted high school

and state exam grades as well as points awarded for special achievements such as par-

ticipating in a national competition. Each study program decides autonomously about

the weights assigned to the subject grades, the aggregate grades, or the special achieve-

ments. This implies that the same applicant can have different admission chances for two

programs, even when competing against the same applicants. The last applicant within

a programs’ quota, i.e., the lowest scoring admitted applicant, determines the minimum

score required for admission. Applicants with a score above this cutoff score are admitted,

all others are rejected.

The special feature of the Croatian system is that the DA matching process is

repeated on an hourly basis. Within a window of about 5-11 days, the application platform

publishes information on preliminary matching outcomes. These are the result of running

the DA mechanism on the submitted applications (ROLs) of the current hour. Applicants

can log in to the application platform to learn their preliminary admission outcome at the

current state of applications. Next to observing to which program they are preliminarily

admitted, applicants observe the full ranking of applicants and their position therein for

each program on their ROL.
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Upon receiving this information on the preliminary rankings, applicants can make

adjustments to their ROLs. These adjustments can be based on the information they

receive, but can also be completely independent thereof. As a consequence of aggregate

adjustment behavior, preliminary matching outcomes and the cutoff scores required for

admission to each program fluctuate over time.1 Only at the application deadline do the

submitted ROLs become final and cannot be changed anymore. For the last time, the DA

mechanism determines a matching based on the final ROLs and applicants are informed

of their binding match. This is the study program to which they gain admission.

Hypothetically, applicants must pay the study fees for the program to which they

are admitted, regardless of whether they choose to attend or not. However, since this is

not enforceable, the only cost of being admitted and not attending is that applicants have

to wait for a year to reapply. Applicants who are not admitted can reapply in autumn

but compete only for the left-over seats. They can also retake the state exam subject

tests, although, if they passed in the first round, only at a cost. Although this option to

participate in a second round improves applicants’ outside option, admission chances in

the second round are lower than in the first as most seats are already taken.

Figure 1: Timeline

Dec. Jan. June July Initial
ROL

Final
ROL

Register
for SE

First log-in to
application platform

Take
SE

Adjustment
period

The exact timing of the events in the application period is shown in Figure 1.

From mid-December to mid-January, applicants register for the state exam subject tests

they want to take. As different study programs require passing or assign weight to the

grade achieved in a specific state exam subject test, applicants have to be informed about

their preferences over study programs already at this early stage. Starting in January,

applicants can log into the centralized application platform for the first time. They can

already start to construct their ROL and observe preliminary matchings. At this time,

the information is not yet conclusive as the matchings are based only on the high school

grades of applicants who already registered and constructed their ROL. During the whole

month of June, applicants take the state exam subject tests. The grades for all the subject

tests are published jointly and the applicants are given a few days to review. After all

issues have been resolved, the first informative preliminary matchings are determined and

published on the application platform at a time that was publicly communicated. This

kicks off the adjustment period, in which applicants receive hourly information updates

1Specifically, if an applicant with a score higher than the cutoff score decides to add a program to the
top of their ROL, she drives out the previously last admitted applicant. The previously second to last
admitted applicant now moves to the lowest rank within the quota and determines the new cutoff score.
The cutoff score increases. Meanwhile, if an applicant with a score below the cutoff score applies to the
program, the cutoff score remains unchanged. Additionally, the cutoff score of another program is affected
by the one applicant’s decision as well. The applicant who was driven out of the quota now applies to his
next-ranked program and potentially drives out the last admitted applicant to this program himself. In
this way, cutoff score fluctuations are passed on from one program to the next, even if only one applicant
decided to adjust their ROL.
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on preliminary matches. For our research, we focus on the adjustment period, starting

with the initial ROL, which are the preference rankings submitted just before the first

preliminary matchings are published. The exact timing of events differs between cohorts,

but all dates are publicly communicated. We provide an overview of the exact event timing

in the Appendix (Panel a) of Table A1).

3 Data

The data used in this project is administrative data from the centralized admission system

in Croatia provided by the Agency for Science and Higher Education. For the whole

universe of applicants in the cohorts 2012 - 2015, we observe hourly application choices

(ROLs) and the corresponding preliminary admission outcomes. This includes information

on the program to which each applicant is temporarily admitted, as well as each applicant’s

rank position in the programs’ ranking of applicants. In addition, we observe the scores

with which applicants apply to each program if an applicant ever adds the program to

their ROL. At the program level, we observe the number of seats or quota offered by each

program. On the applicant level, we observe all high school subject grades, state exam

subject grades, and their gender. By combining quotas, program’s rankings of applicants,

and applicants’ scores, we compute a cut-off score for each program in every hour within

the adjustment period. Based on this, we compute for each applicant the distance to the

cut-off in terms of points and rank positions.

In 2019, we conducted a survey on the universe of applicants. Before registering

on the application platform, the applicants responded to our survey in order to proceed

with the log-in. The questions in the survey appeared one by one. Applicants were asked:

1) ”Imagine a situation where you can enroll in any study program in Croatia, regardless

of the points you have achieved. Which study program would you choose?” 2) ”In case

you give up your first choice, which study program would be your second choice?” 3) ”In

case you give up your second choice, which study program would be your third choice?”.

After they locked their top-3 preferences we asked to elicit their beliefs on admission

probability to each program listed previously. Applicants could not revise their answer to

the previously answered questions after observing the next question.

For our analysis in Section 6.2, we combine our survey data with administrative

data similar to the data described for the earlier cohorts above. As in 2019 we do not

observe hourly ROLs directly, we use data on real-time changes made by applicants to

their ROLs to recreate applicants hourly ROLs.

Overall, we have information on about 35,000 applicants applying to more than

700 programs over an adjustment period that lasts 5-11 days, depending on the cohort.

On average, applicants rank about 4 programs on their ROL per hour. This results in 8.8

- 20.7 million observations per cohort. The exact numbers for each cohort are shown in

Table 1.

In Figure 2 we show the number of applicants relative to the number of seats offered

by universities per cohort. Although in 2012 and 2013 demand for seats exceeds supply,

demand can be largely met in 2014 and 2015. Only in 2019 more seats are offered than

applicants apply for. This implies that the competition for programs changes over time.

In a nutshell the real measure of demand is the number of applicants times the number
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Figure 2: Number of applicants and seats by cohort

Note: Figure shows the number of applicants applying via the centralized application system and the
number of seats offered by universities per cohort. The shaded areas highlight the years in our sample.

of choices, which is always far greater than number of available seats. From year to year

the demand for programs is not necessarily equally distributed, we show in Panel b) of

Table A1 in the Appendix the number of overdemanded programs and the magnitude of

overdemand per cohort.

Table 1: Summary statistics

2012 2013 2014 2015

# programs 727 759 767 780
# overdemanded programs 313 296 251 358
# applicants 34,735 34,922 35,938 36,759
# hours 83 118 216 98
avg. length ROL 4.07 3.87 3.57 4.58
# observations 8,790,011 12,053,877 20,669,729 13,378,643

Note: Table shows the total number of study programs, the number of study programs with overdemand,
the number of applicants, the number of hours, the average number of ranked programs and the total
number of observations in each sample (2012, 2013, 2014 and 2015).

4 Dynamics of the Repeated DA

The main feature that distinguishes the Croatian system from other applications of the

DA is its iterative character. While in other systems, applicants construct their preference

ranking without any individual-specific information, applicants in Croatia receive hourly

information signals on their preliminary matching outcome under the current status of

application. We consider the preliminary match result an information signal on applicant-

and program-specific admission probability. From preliminary matchings, but also from

applicants’ distance to the cut-off, i.e., by how close they did or did not make it, they can

deduct a proxy for applicant-specific admission probability.

Based on updated beliefs about admission probability, applicants can continue

searching for programs to add to their ROL. For example, an applicant who observes

a low admission probability to all programs in their ROL might want to add a program

with a higher admission probability. Another applicant with a high admission probabil-

ity to most of their ranked programs might want to look for a more ambitious program.

Additionally, since application choices are not final until the application deadline, appli-
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cants can experiment with their choices over the course of the adjustment period. Only

by adding a program to their ROL they can receive a signal and learn about admission

probability.

As a consequence of applicants adjusting their ROLs to the new information, the

Croatian system develops its own dynamic. With new applicants entering the competition

for programs, the cutoff scores fluctuate. Thus, even an applicant who does not make any

changes to their application choices from one hour to the next may observe a change in

information signals about admission probability. First, this implies that the information

signal should be regarded as a fuzzy signal rather than a fully informative one on the final

admission probability. Second, fluctuating cut-off scores add further uncertainty, which

might influence applicants’ choices. In this first part of our research, we investigate the

dynamic implications of the repeated DA.

4.1 Volatility in Program Cutoffs

Unlike in a static DA, where there is only one program-specific cut-off for a cohort, ap-

plicants in a repeated DA setting observe hourly fluctuating admission cut-offs for every

program. On one hand, this imposes additional informational uncertainty for programs

with high cutoff score volatility. On the other hand, this system allows applicants to ex-

plore other options outside their initial set of preferences and to learn about admission

chances.

Figure 3: Cutoff score fluctuations over time (relative to the final cutoff)

Note: Figure shows cutoff score fluctuations over the adjustment period. The y-axis shows the difference
between the current and the final cutoff score. A positive value means that the current cutoff score is
higher than the final cutoff score. We aggregate the deviations from the final cutoff score of 10 percentile
groups of programs based on the final cutoff score. The 100th percentile group are the 10% of programs
with the highest final cutoff score, i.e., the most competitive programs.

In Figure 3 we show for 2015 how the cutoff score evolves over time. We group

programs into 10 groups according to their absolute cutoff score. Programs in the highest

percentile group are the most competitive programs with the highest final cut-off score.

The y-axis shows the group average of the relative cutoff score, i.e., the hourly cutoff score
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deviation from the final cutoff score. The x-axis shows the time left until the application

deadline, when the application choices are final. Apart from the very first hours, the hourly

cutoff score lies above the final cutoff, implying higher preliminary admission criteria than

the relevant final one. On average, the hourly cutoff score for each group never deviates

by more than 10 points from the final cutoff. However, the magnitude of cutoff score

deviations differs by percentile groups, with the least competitive programs showing larger

average deviations from the final cutoff score. This pattern is even clearer in the cohort

2012 - 2014 as shown in Figure A1 in the Appendix.

Similarly, Figure 4 shows the change in the cutoff score from the beginning of the

adjustment period (initial ROL) to the application deadline for single programs. Each

program is represented by a marker. Markers below the 45-degree line are programs

whose final cut-off score lies below the initial cutoff score. Across the full distribution

of programs by final cutoff score, there are programs which experience an increase and

a decrease in cutoff scores over time. However, larger changes in the cutoff score seem

more common for programs with lower to medium final cutoff scores. At the upper end,

markers are distributed closer around the 45-degree line. Although we observe this pattern

by competitiveness, cutoff score changes seem not to be correlated to the programs quota.

The figure looks similar for the other cohorts (Figure A2). Panel c) of Table A1 in

the Appendix shows the absolute number of programs with an increasing, decreasing, or

constant cutoff score between the initial and final ranking. In all cohorts, but 2015, the

number of programs with a decreasing cutoff score is 2-3 times higher than the number of

programs with an increasing cutoff score. Only in 2015 the number of programs with an

increasing and decreasing cutoff score are comparable.

Figure 4: Initial and final cutoff scores

Note: Figure shows for each program the initial cutoff score at the beginning of the adjustment period and
the final cutoff score. Each program is represented by one marker, colored by the program’s quota size.
Programs above the 45-degree line are programs whose cutoff score decreases over time, programs below
the 45-degree line are programs whose cutoff score increases over time.

Next, we investigate whether programs differ in their number of cutoff score fluc-

tuations. Panel a) of Figure 5 shows the share of hours in which the cutoff score of a

program changes relative to the previous hour in 2015. Although some programs cutoffs

change in almost 60% of hours, other programs cutoff scores remain largely constant over
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time. The cutoff score of the average program changes in 32.18% of hours. In the previous

cohorts the number of changes are slightly lower but comparable (see Figure A3).

Figure 5: Distribution of programs by number and avg. magnitude of fluctuations

(a) Share of hours with fluctuations (b) Avg. magnitude of fluctuations

Note: Panel a) shows the distribution of programs by the share of hours in which their cutoff score changes.
For Panel b) we aggregate the the (absolute) cutoff score fluctuations of each program over the adjustment
period conditional on the cutoff score fluctuating. We show the distribution of programs by their average
absolute magnitude of cutoff score fluctuation.

Additionally, programs differ in the magnitude of fluctuations.2 Panel b) of Figure

5 shows that, conditional on the cutoff score changing, the average cutoff score fluctuates

by 3.45 points. Some programs have average cutoff score fluctuations of only one point

while few programs experience average cutoff score fluctuations by more than 10 points.

Figure A4 in the Appendix shows the results for the other cohorts.

Last, we investigate whether the number and magnitude of fluctuations are corre-

lated with program characteristics, i.e., quota and competitiveness. Panel a) of Figure 6

shows that larger programs experience more cutoff score fluctuations while, conditional

on the quota, the cutoff score of more competitive programs fluctuates less frequently.

Panel b) of Figure 6 shows that larger programs experience fluctuations of lower magni-

tude. Thus, although the cutoff score of programs with a higher quota fluctuates more

frequently, the fluctuations are of lower magnitude. As cutoff score fluctuations are driven

by changes in the set of applicants above the cutoff, larger programs are more likely to

experience a change. Figures A5 and A6 show the results for the other cohorts.

4.2 Adjustment behavior and updating beliefs on admission probability

While changes in the cutoff scores induce applicants to adjust their choices, it is the

aggregate adjustments that drive the cutoff score fluctuations. Thus, adjustments induce

further adjustments.

In Figure 7 we show the share of applicants who make at least one change to their

ROL in an hour of the adjustment period for all 4 cohorts of 2012 - 2015. The dashed

vertical lines show the start and end date of the adjustment period per cohort, which differ

slightly across the years. Yet, the cohorts exhibit similar behavioral patterns. First, the

share of applicants who make at least one change is particularly high in the very beginning

2As cutoff score fluctuations are often partly reversed in a following hour, we use the absolute change
to compute the average as otherwise positive and negative fluctuations cancel each other out.
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Figure 6: Number and magnitude of fluctuations by program characteristics

(a) Number of changes (b) Magnitude of fluctuations

Note: Panel a) shows programs by their number of cutoff score fluctuations and quota. Each marker rep-
resents a program colored by their final cutoff score. Programs with a higher quota experience more cutoff
score fluctuations and conditional on the quota, programs with a higher cutoff score also experience fewer
fluctuations. Panel b) shows programs by their average absolute magnitude of cutoff score fluctuations,
conditional on the cutoff score fluctuating and by their quota. Programs with a higher quota experience
fluctuations of smaller magnitude.

of the adjustment period. Depending on the cohort, 5 - 12% of applicants adjust their

ROL in the very first hour of the adjustment period. A potential explanation for this is

that at this time, applicants receive the very first signal on admission probability. As prior

beliefs are only subject to applicants’ subjective assessment of admission probability, the

first information signal likely induces the strongest belief-updating and consequently the

strongest reaction.

The following fluctuations reflect day-night cycles, where up to 4% of applicants

adjust their ROL in a single hour during the day and hardly anyone adjusts their ROL at

night.

Figure 7: Share of applicants who adjust their ROL

Note: Figure shows the share of applicants making at least one change to their ROL in each hour of the
adjustment period for the cohorts 2012-2015. The vertical dashed lines mark the beginning and the end
of the adjustment period.

In the last hour of the adjustment period, the share of applicants who adjust their
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ROL increases again. About 6% of the applicants adjust their ROL just before the appli-

cation deadline. But also in the hours leading up to the application deadline, the share

of changing applicants is higher. As applicants approach the application deadline, the in-

formation signal becomes clearer and more relevant. An increasing number of applicants

approach their final choices as they experimented with all programs they consider relevant

and evaluated their choices in the previous hours. This can also be seen in Figure 3, which

shows that the cutoff scores converge to their final value over the last few hours of the

adjustment period. In addition, applicants approach their final choices and might take

the information signals more seriously.

Although this is only suggestive evidence and we hypothesize about explanations

for observed behavior, we provide causal evidence for applicants’ reaction to signals on

admission probability in the next chapter.

5 Reaction to signals on admission probability

In the second part of our paper, we investigate whether applicants consider the probability

of admission in their application choices. Via the application platform, applicants to

higher education in Croatia receive hourly information signals on admission probability.

Although applicants can derive admission probability from their distance to the cut-off in

terms of points or rank positions, the strongest signal they receive is the information on

whether they are, at the current state of applications, above or below the cut-off. We take

advantage of the sharp (preliminary) admission cutoff that sorts applicants into groups

that receive either a positive or negative preliminary admission signal.

Applicants above and below the cutoff point are arguably very similar. First, they

are highly comparable in their grades as reflected in the score based on which applicants

are admitted. Second, they chose to apply to the same study program. Third, due to

fluctuating cutoff scores, applicants in a narrow bandwidth around the cutoff are exoge-

nously distributed to receive a positive and negative preliminary admission signal. As

cutoff score fluctuations are driven by other applicants’ choices, a single applicant cannot

influence the signal she receives. Lastly, applicants who are above the cutoff in one hour

might be below the cutoff in the next. Thus, to some extent, applicants above and below

the cut-off are not only highly comparable but are actually the same.

5.1 Methodology

We estimate the following econometric specification:

Changei,t,p = β0 + β1Abovei,t,p + β2Disti,t,p + αp + ϵi,t,p (1)

where Changei,t,p equals 1 if applicant i at time t makes any change to the study

program p that is currently on the first rank position of their ROL. Abovei,t,p is a dummy

that indicates whether an applicant has a score above the admission cut-off and therefore

receives a positive preliminary admission signal. Disti,t,p is our running variable and

indicates an applicant i’s rank position relative to the cutoff score or quota of program p.

αp are program-fixed effects.

We estimate this model for the programs on the first three preference ranks, because
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on average more than 85% of individuals are admitted to one of their three highest ranked

programs. In Section 4.1 we provide evidence for systematic differences in the frequency

and magnitude of cutoff score fluctuations between programs that are related to program

characteristics. This allows risk-averse applicants to select programs with fewer or smaller

cutoff score fluctuations. We account for this possibility of selection with program FE.

Due to data restrictions, we do not observe whether an applicant logs in to the

application platform and observes the signal on admission probability. To partly account

for this, we further restrict the sample of the RDD regression to the last 10 hours before

the application deadline. Towards the end of the adjustment period the share of applicants

who make at least one change increases, which increases the probability that they logged

in to the application platform and actually observed the signal. Yet, this does not fully

solve our data limitation, which is why our results can be regarded as lower bounds.

5.1.1 Choice of bandwidth

To ensure that applicants above and below the admission cut-off are highly similar, par-

ticularly in terms of the information signal they receive, we define the bandwidth on the

program level based on the quota. For each program, we select the 10, 20 or 30% of

lowest performing applicants within the quota and the same number of highest scoring

applicants just below the quota. This measure of relative rank position is closely related

to admission probability and accounts for differences in quota, and density around the

cutoff point. Programs with a larger quota receive a stronger weight in the regression,

which reflects the number of applicants who apply to these programs.

The intuition is the following. Applicants react to the information signal on admis-

sion probability they receive (negative when below the cut-off point). An applicant who

is 10 rank positions below the cutoff of a program with a quota of 100, would perceive the

negative signal as weak, since still being very close to the cutoff (top 10% of applicants

below the cutoff). In contrast, a ranking of 10 below the cutoff point of a program with a

quota of 20 might be perceived as a stronger negative signal. By restricting the sample by

relative rank position, we select only applicants who receive a similar signal on admission

probability and exclude applicants who receive a very strong positive or negative signal

and have a significantly higher or lower admission probability than students just around

the cutoff in relative terms.

In Table 2 we show exemplary for 2015 how the information signal differs for appli-

cants within the bandwidth. Here, the full sample is only restricted by the bandwidth of

10, 20 or 30% of the quota around the cutoff. The RDD sample is additionally restricted

to applicants’ highest-ranked program and contains only the last 10 hours before the ap-

plication deadline. As the bandwidth increases, the maximum point difference in terms

of distance to the cutoff increases from about 16 to 34 and to 51 for a bandwidth of 30%.

Importantly, the average admission probability for applicants above and below the cut-off

is highly similar in all the samples. Table A2 shows the summary statistics for all cohorts.

5.2 Results

First, we show that applicants react to the information signals in a reduced form analysis.

We use three different information treatments, which all signal admission probability.

Moving up by one point relative to the cutoff score increases admission probability by
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Table 2: Summary statistics RDD sample, 2015

10% 20% 30% 10% RDD 20% RDD 30% RDD
(1) (2) (3) (4) (5) (6)

Min. point distance -12.49 -24.13 -34.18 -6.71 -16.53 -25.16
Max. point distance 15.89 26.28 35.67 9.54 18.25 26.50
Min. rank distance -5.08 -10.48 -15.60 -4.90 -10.13 -15.01
Max. rank distance 5.08 10.49 15.67 5.00 10.32 15.47
Avg. adm.prob. below 0.96 0.94 0.93 0.97 0.95 0.93
Avg. adm.prob. above 0.97 0.98 0.98 0.98 0.98 0.98

Note: In this table we show the range of scores, rank positions and admission probability in each of six
samples. To compute the minimum point distance we take for each program the lowest score within the
sample and subtract the cutoff. For example, the average minimum point distance in Column 1 of -12.49
means that across all programs the lowest scoring applicant within the sample scores on average 12.49
points below the cutoff score. Similarly, applicants within the sample of Column (1) are up to 5.08 ranks
below and up to 5.08 ranks above the cutoff/quota. The average admission probability below the cutoff is
96%, that of applicants above the cutoff is 97%. The samples in Columns (1)-(3) are restricted only by the
relative rank distance i.e., 10, 20 or 30% of the quota. The samples in Columns (4)-(6) are additionally
restricted to the last 10 hours of the adjustment period and to applicants’ highest ranked programs. These
are the samples we use for all RDD regressions.

Table 3: Information signals and Probability to change, 2015

Dep. var.: 1[Change] × 100
Point distance Rank distance Above/Below

(1) (2) (3)

Distance -0.0034*** -0.0023*** -0.6461***
(0.0002) (0.0001) (0.0295)

Constant 4.2840*** 4.2571*** 4.6148***
(0.0148) (0.0149) (0.0204)

Program FE No No No
Observations 1,900,603 1,900,603 1,900,604
R-squared 0.0002 0.0002 0.0002

Note: Table shows the coefficients of regressing three different types of information signals on a dichotomous
variable that equals 1 if an applicant changes a program at time t. The information signal in Column 1
is the distance to the cutoff in terms of points. Below the cutoff, the distance is negative, above the
cutoff it is positive. The coefficient of -0.00003 means that as applicants below the cutoff move closer
to the cutoff and applicants above the cutoff move further away by one point, the probability to change
declines by 0.003 pp. Similarly, the information signal in Column 2 is the rank distance to the cutoff. In
Column 3 the information signal is dichotomous and equal to 1 if an applicant is above the cutoff and zero
otherwise. Applicants above the cutoff are 0.65pp less likely to adjust their ROL. Robust standard errors
in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

bringing applicants below the cutoff closer to it and increasing the distance to the cutoff

for applicants above the cutoff. The same is true for moving up by one rank position.

Applicants below the cutoff reduce the rank distance while applicants above the cutoff

increase the rank distance to the cutoff. For both, this implies an increase in (perceived)

admission probability. As a third information signal we use the dichotomous signal of

being positioned above or below the cutoff, which is arguably the signal perceived most

strongly by the applicants.

The reduced form results are shown in Table 3. Tables A3, A4 and A5 in the

Appendix show results for the other cohorts. Moving up by one point reduces the hourly

probability of changing the program at the first position of an applicant by 0.0013 to

0.0034 pp in all cohorts. Applicants who experience the average cutoff score fluctuation

of 3.5 points are 0.005 - 0.012 pp less likely to change. The results look similar for rank
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positions, shown in Column (2). In line with the dichotomous signal being perceived most

strongly, Column (3) shows the largest coefficients: applicants above the cutoff are 0.25 -

0.65 pp less likely to adjust their first preference than applicants below the cutoff. Relative

to the baseline probability to change, students above the cutoff have a 5.2 - 14.1% lower

probability to change.

When analyzing the magnitude of the coefficients we have to consider that ap-

plicants do not always observe the hourly information signals as they have to log in to

the application platform to do so. Yet, we treat applicants as receiving the signal on an

hourly basis as we do not observe their log-in behavior. This puts a strong downward

pressure on our estimated results. For the reduced form analysis in Table 3 we use all

hourly observations during the adjustment period. To circumvent this issue in our main

analysis, we reduce the sample to only the last 10 hours of the adjustment period for two

reasons. First, as can be seen in Figure 7 the share of applicants who make a change

increases significantly in the last hours, which indicates that many applicants log-in to

the application platform. Second, as only the last submitted ROL is relevant for the final

admission outcome, more applicants might be inclined to log-in in order to receive the

more relevant information. Thus, reducing the time observations in our sample should

reduce the concern of underestimation although it cannot be eliminated.

Figure 8: Probability to change around the admission cutoff, 2015

Note: Figure shows the discontinuity in the probability to change the program on the first rank when
receiving a positive and negative preliminary admission signal. It is the result of Equation 1 for the sample
from 2015 and a bandwidth of 20% of the quota above and below the cutoff. The vertical lines show the
95% confidence interval.

Exploiting the RDD setting outlined above, we show that applicants’ strategic be-

havior is driven by changing beliefs on admission probability. Exemplary, Figure 8 depicts

a clear discontinuity in the probability to adjust the ROL at the cutoff in 2015 for a band-

width of 20% of the quota around the cutoff. Column (1) of Table 4 shows that applicants

who receive a positive preliminary admission signal are 0.6 pp less likely to adjust their

ROL than applicants below the cutoff who receive a negative preliminary admission signal.

Relative to the baseline probability to change of 3.5%, this is an increase by more than

17%. This can be interpreted as applicants reacting to the negative information signal

by downward-adjusting their beliefs on admission probability. They omit study programs

from their ROL for which admission seems less likely. Our results thus show that appli-

17



Table 4: Distance to cutoff and Probability to change, bandwidth = 0.2, 2015

Dep. var.: 1[Change] × 100
1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.592*** -0.608*** -0.815** -0.794* -1.587*** -1.773**
(0.211) (0.227) (0.409) (0.440) (0.603) (0.736)

Distance -0.001 -0.001 0.036*** 0.036*** 0.028** 0.020
(0.005) (0.005) (0.007) (0.009) (0.012) (0.015)

Constant 3.506 5.268 5.711
Program FE No Yes No Yes No Yes
Observations 48,678 48,678 19,511 19,511 10,145 10,145
# Programs 351 325 284
R-squared 0.0003 0.0003 0.0010 0.0006 0.0007 0.0006

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for
changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and
(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the
cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <
.05, *** p-value < .01.

cants incorporate perceived admission probability into their application choices and act

strategically. We repeat the analysis for bandwidths of 10% and 30% of each programs’

quota around the cutoff and for cohorts 2012 - 2014 (Tables A6, A7, A8, A9, A10, A11,

A12, A13, A14, A15, A16 in the Appendix). Across all years and bandwidths, applicants

above the cutoff are between 0.4 and 1 pp more likely to change (conditional on the coeffi-

cients being statistically significant), which corresponds to an increase of 11 - 23% relative

to the baseline probability to change.

We repeat this analysis for programs on ranks 2 and 3. Here, we condition the

sample on applicants who are not admitted to any of their higher ranked programs. Only

for 2015 we find significant evidence for a reaction to a negative preliminary admission

signal. Applicants above the cutoff are 0.6 - 3 pp less likely to adjust their second or

third preferences. Relative to the baseline this is an increase by 12 - 46.9%. Yet, due to

lacking evidence for cohorts 2012-2014, we cannot conclude that applicants react to the

information signal of the second- and third-ranked program.3

5.3 Robustness checks and Heterogeneity

To further support our results we conduct multiple robustness checks and heterogeneity

analyses. First, we show in Figure A15 that there is no discontinuity in confounding

factors i.e., the share of women and weighted high school and state exam points at the

cutoff.4

3This lack of a statistically significant reaction might also be driven by applicants reacting to the
negative information signal they receive for a higher ranked program. As for this exercise we condition
the sample on applicants who are below the cutoff of any higher ranked program, they might also react to
this negative signal by making a change to their lower ranked, i.e., second- or third-ranked, program. We
would observe this as an adjustment as a reaction to the either positive or negative signal for the second-
or third-ranked program, which might blur our results.

4The small jump in weighted state exam and high school grades are of small magnitude (about 2 points)
compared to the average state exam/ high school grade of about 325/265. Thus, we argue that this minor
discontinuity is negligible and applicants just above and below the cutoff are comparable in terms of ability.
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Figure 9: No discontinuity in counterfactuals, bw = 20%, 2015

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: Figures are based on Equation 1 using as dependent variable a gender dummy (Panel a)), applicants’
weighted state exam grades (Panel b)) and weighted high school grades (Panel c)). The sample is the 2015
cohort under bandwidth restrictions of 20% of the quota above and below the cutoff. The vertical lines
show the 95% confidence interval.

Table 5: Distance to cutoff and Probability to change, bandwidth = 0.2, 2015

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.205 -0.267 -0.426*** -0.443*** -0.003 -0.003
(0.188) (0.202) (0.138) (0.137) (0.003) (0.003)

Distance 0.002 0.004 0.005* 0.005* 0.001*** 0.001***
(0.004) (0.004) (0.003) (0.003) (0.000) (0.000)

Constant 2.634 2.883 .1
Program FE No Yes No Yes No Yes
Observations 48,678 48,678 98,090 98,090 52,088 52,088
# Programs 351 354 351 351
R-squared 0.000026 0.000034 0.000093 0.000089 0.001651 0.001651

5.3.1 Types of changes

Second, we further specify the reaction to the information signal by investigating whether

it affects the probability of applicants to drop the program from their ROL completely.

Previously, we restricted our analysis to the highest ranked program as only here the

direction of change is clear: applicants can only move it to a lower rank or delete it

from their ROL. Now, we can investigate applicants reaction to information signals on

all programs as the direction of change is clear when applicants delete a program. The

results for 2015 are shown in Columns (1)-(4) of Table 5 and for other years and other

bandwidths in Tables A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27.

Overall, we find some evidence for applicants being more likely to delete a program

on any rank when receiving a negative preliminary admission signal. In all cohorts we

find a largely negative correlation between -0.1 - 0.4 pp. In 2012, 2013 and 2015, this

correlation is largely statistically significant, depending on the bandwidth. Relative to the

baseline probability to delete a program, applicants are between 8.6 and 14.7% less likely

to delete a program when they are above the cutoff.

For the highest ranked program we find statistically significant evidence only for

2013. In 2013, applicants above the cutoff are 0.6 - 0.7 pp less likely to delete the affected

program, which corresponds to an increase of 17.6 - 18.7% relative to the baseline proba-

bility to change a program of 3.6%. Although we find a negative correlation also for the

cohorts 2012 and 2015, the coefficients remain statistically insignificant.

Third, we investigate the impact of the information signal on the probability to
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Table 6: Distance to cutoff and Probability to change, bandwidth = 0.2, 2015

Dep. var.: 1[Change] × 100
Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.690** -0.755** -0.430 -0.377 -0.430 -0.388
(0.269) (0.314) (0.338) (0.316) (0.338) (0.298)

Distance -0.001 -0.004 0.000 0.000 0.000 -0.001
(0.006) (0.007) (0.007) (0.006) (0.007) (0.006)

Female 0.214 0.345
(0.281) (0.278)

Above × Female -0.260 -0.361
(0.432) (0.419)

Female × Dist -0.002 -0.001
(0.009) (0.008)

Constant 3.581 3.367 3.367
Program FE No Yes No Yes No Yes
Observations 29,925 29,925 18,753 18,753 48,678 48,678
# Programs 330 302 351
R-squared 0.0004 0.0004 0.0001 0.0001 0.0003 0.0003

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns
(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)
for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the
ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard
errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

extend the ROL. This particular behavioral response is interesting as it increases appli-

cants probability to be matched to any program. The information signal might encourage

applicants at risk of not being matched at all who initially rank fewer than the allowed 10

programs to extend their ROL. Columns (5)-(6) of Table 5 shows the results. For none

of the cohorts we find significant effects. The information signal on admission probability

for the highest ranked programs seems to not induce applicants to extend their ROL.

5.3.2 Heterogeneity by gender

To investigate whether the results are driven by only one gender, we distinguish male and

female applicants a) by running separate regressions for a male and female sample and b)

by interactions. Table 6 shows the results for 2015. For this cohort, only women seem to

react to the information signal on admission probability. Female applicants who receive a

positive preliminary admission signal are 0.76 pp less likely to adjust their preferences than

female applicants below the cutoff. Relative to women’s baseline probability to change of

3.6% this is an increase in by 21.1%. Meanwhile, we do not observe a significant reaction to

the information signal by men. Yet, these results are not consistent across the cohorts (see

Tables A28, A29, A30, A31, A32, A33, A34, A35, A36, A37, A38, ). For 2012 and 2013,

we find significant coefficients of similar size for both men and women. For 2014 we do

not find any significant coefficients. Thus, we cannot conclude that there are clear gender

differences in the reaction to the information signals, although we find more consistent

evidence for women.

5.3.3 Placebo test

For further robustness we repeat the RDD estimation using placebo cutoff scores. We

identify placebo cutoffs as the score of the last admitted applicant under a quota that is

10, 20 or 30% higher or lower than the actual quota. For example, to obtain the estimate
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for a cutoff score under a quota reduced by 10%, the placebo cutoff for a program with a

quota of 100 is the score of the 90th admitted applicant.

Figure 10: Coefficients with placebo cutoffs

Note: Figure shows the coefficients and 95% confidence bands of Equation 1 using placebo cutoffs. For

example, for the placebo cutoff at -0.1 we push the cutoff down by 10% of the quota. For a program with

a quota of 100, this implies that the cutoff is at the score of the applicant on rank 10 below the actual

cutoff. Similarly, we push the cutoff up for regressions with positive placebo cutoffs, right to the vertical

dashed line. We show results for all four cohorts.

In Figure 10 we show the coefficients and 95% confidence bands for estimations

with cutoff scores under 10, 20 and 30% increased and reduced quotas. Although we

find statistically significant estimates also at a cutoff score moved up or down by 10%

of the quota, the results look best for the true cutoff score. A potential explanation for

significant coefficients with the closest placebo cutoff is that applicants not only react

to the dichotomous signal but also to the point distance. As the point distance to the

placebo cutoff and of the true cutoff are correlated, this might drive the significant results

for placebo cutoffs.

6 Developing a strategy

In chapter 5.2 we established that applicants react to signals on admission probability,

which implies that beliefs on admission probability feed into application choices. Appli-

cants who receive a negative preliminary admission signal are more likely to change or

delete the affected program and more likely to extend their ROL. So far, we only looked

at single decisions that are driven by the information provided by the repeated DA system.

Only jointly these decisions compose a strategy and only at the end of the adjustment

period applicants’ strategy is binding. Before then, applicants can play with their choices

to gather information on the probability of admission and to develop their final strategy.

In this chapter, we investigate how applicants develop their final application strategy over

time.
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6.1 Risk to remain unmatched

The most consequential application error is to compose a ROL with a high risk of not being

matched to any ranked option. Due to overestimating admission probability to the ranked

programs, applicants who rank low-probability programs only and/or (additionally) sub-

mit a shorter than allowed ROL, might end up unmatched although feasible programs that

they prefer over their outside option are available. As applicants in the Croatian system

receive signals on admission probability and observe if they are unlikely to be matched to

any ranked program, the repeated DA mechanism might help to diminish this risk.

To investigate how the risk of remaining unmatched evolves over the adjustment

period, we compute for each applicant × program combination a measure of admission

probability. Drawing from the set of observed final ROLs with multiple-drawing, we create

500 artificial samples, each containing the number of applicants who apply to at least one

program at the application deadline. By restricting the set of ROLs from which we draw

to contain only those submitted in the last hour before the application deadline, we ensure

that our results are not driven by time trends in application choices. Each sample reflects

the final application choices based on which the binding matchings are computed. We

replicate the DA mechanism as it is implemented in Croatia and rerun it for each of the

500 artificial samples. From this we obtain matching results for each of the 500 samples and

can compute the admission cut-off for each program. In this way, we obtain a distribution

of possible cut-off scores for each program and can determine the share of scenarios in

which each applicant has a score higher than the cutoff score. This share reflects the

probability of admission of an applicant for a specific program. The computed admission

probability does not vary over time and is therefore independent of cutoff score trends.

However, the probability of remaining unmatched can change over time as a result of

applicants changing the composition of their ROL.

Figure 11 shows for 2015 how our simulated admission probability evolves around

the admission cutoff. Admission probability increases as applicants approach the admission

cutoff and increasingly so, following an S-curve. Applicants up to 25 points below the

cutoff have an admission probability of about 90%. In 2012 and 2014 this looks slightly

different, with applicants at the cut-off having an admission probability of only about

80%. The results for 2013 are somewhere between; here applicants at the cut-off have an

admission probability of about 90%. The results for all years are shown in Figure A20 in

the Appendix.

Using the simulated admission probabilities, we computed for each of applicants’

ROLs the risk to remain unmatched as the product of each ranked program’s specific risk

of being rejected.

We show in Panel a) of Figure 12 how the risk to remain unmatched evolves during

the adjustment period. Here, the x-axis denotes the time left to make adjustments in

hours until the application deadline, when the time left is zero. The aggregate risk to

remain unmatched declines by about 3 pp from an initial risk of 11% to a risk of 8% at the

application deadline. This aggregate trend covers a significantly sharper decline for the

most-at-risk applicants as can be seen in the subgroup analysis in Panels b) - d) of Figure

12. While the large majority of applicants’ risk does not change significantly, applicants

with an initial risk of 90-100% (Panel d)) experience a strong decline of approximately 20
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Figure 11: Simulated admission probability around the admission cutoff, 2015

Note: Figure shows how the simulated admission probability evolves around the admission cutoff. The
vertical line shows the final cutoff.

pp on average. The results for 2012, 2013 and 2014 are similar. Low-risk applicants’ risk

to remain unmatched remains largely constant while the risk of applicants with a high

initial risk declines by 6 to 20 pp. Figures A21, A22 and A23 in the Appendix show the

results for the other cohorts.

A decline in the risk of remaining unmatched can be driven by two types of ap-

plication choices. First, applicants might extend their ROL by adding more programs,

as long as the maximum length of 10 programs is not yet reached. As long as admission

probability to a program is strictly positive, adding the program to the ROL reduces the

risk to remain unmatched. Panel a) in Figure 13 shows that in aggregate applicants reduce

the length of their ROL by about 1.2 programs on average. In 2012-2014 the decline is of

similar magnitude (see Panel a) of Figures A24, A25 and A26). This aggregate trend is

largely driven by applicants with a low initial risk to remain unmatched. Applicants with

a 90-100% initial risk to remain unmatched slightly extend their ROL in 2015 (Panel d) of

Figure 13), do not change the length of their ROL in 2014 and slightly shorten their ROL

by about 0.5 programs in 2012 and 2013 (see Figures A24, A25 and A26) for all cohorts).

Meanwhile, applicants with a low initial risk to remain unmatched shorten their ROL by

about 1.5 programs in all four cohorts.

Although applicants tend to shorten their ROL, their risk to remain unmatched

does not increase as shown in Figure 12 (other cohorts: Figures A21, A22 and A23).

Applicants with a low initial risk to remain unmatched might have enough ”safe” options

to retain their low risk besides shortening their ROL. This is possible even if they drop

some of their ”safe” choices, as long as one ”safe” option remains on their ROL. Applicants

with a high initial risk to remain unmatched do not have that option. To avoid an increase

in the risk to remain unmatched while shrinking their ROL, high-risk applicants have to

replace programs with a low admission probability with higher-probability programs.

The second application choice that might drive the decline in applicants’ risk to

remain unmatched is exchanging ranked programs for programs with higher admission

probability. Panel a) of Figure 14 shows how the average admission probability of programs
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Figure 12: Average risk to remain unmatched over time, by initial risk (2015)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average risk to remain unmatched evolves over time for two subgroups. In
Panel a) we show the average risk for the full sample, in Panel b), c) and d) for the subgroup of applicants
with initial risks to remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group with an initial
risk of 0-1% makes up 80.8%, the group with an initial risk of 1-89% makes up 11.5% and the group with
an initial risk of 90-100% makes up 7.7%.

on ranks 1-3 and on ranks 4-10 evolve over time. While the admission probability of

programs on ranks 1-3 increases by 4.5 pp, admission probability of programs on ranks

4-10 decreases by about the same magnitude. The results are similar for 2012-2014,

although the magnitude of change is lower in earlier years (see Figures A27, A28 and A29).

Again, disaggregating the trend by initial risk to remain unmatched shows significant

group differences (Panels b), c) and d) of Figure 14). While the behavioral pattern of

low-risk applicants matches the aggregate pattern, applicants with a high initial risk to

remain unmatched replace programs on all ranks with programs with higher admission

probability. Admission probability to programs on ranks 1-3 increases from 0% to about

8%, that of programs on ranks 4-10 increases to 18% on average. Combined with Panel d)

of Figure 13, this shows that for high-risk applicants the risk to remain unmatched declines

largely due to exchanging low-probability with high-probability programs and particularly

so for programs on lower ranks.

Another interesting finding from Figure 14 is that low-risk applicants seem to rank

high-probability programs above programs with a lower admission probability. Assuming

that applicants have a preference for more competitive programs, this application behavior
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Figure 13: Average number of ranked programs over time, by initial risk (2015)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average number of ranked programs evolves over time for two subgroups. In
Panel a) we show the average length of the ROL for the full sample, in Panel b), c) and d) for the subgroup
of applicants with initial risks to remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group
with an initial risk of 0-1% makes up 80.8%, the group with an initial risk of 1-89% makes up 11.5% and
the group with an initial risk of 90-100% makes up 7.7%.

is never optimal. As the gap in the average admission probability of programs on ranks

1-3 and 4-10 increases over time, receiving information signals on admission probability

seems to exacerbate this strategic error. Of course, applicants might have a preference for

program characteristics other than competitiveness but in this case we should not observe

any pattern in average admission probability between higher- and lower-ranked programs.

Meanwhile, high-risk applicants follow the weakly dominant strategy by placing

lower-probability programs on ranks 1-3 while filling lower ranks with safer options. Al-

though they start with an average admission probability of approximately zero for all

programs, this pattern emerges. In the context of the DA mechanism, this implies that

applicants try for low-probability ”reach” programs first and apply for safer options only

in case they are not admitted to any of the higher-ranked programs.

Although the application choices of low-risk applicants are irrational in the frame-

work of the canonical school choice model (Abdulkadiroğlu and Sönmez, 2003) and also

under newer advances of the literature including incomplete preferences due to costly

search (Artemov, 2021; Bucher and Caplin, 2021; Arteaga et al., 2022) and constrained

choice (Calsamiglia et al., 2010; Ali and Shorrer, 2025), we are not the first to provide
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Figure 14: Average admission probability over time, by initial risk (2015)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average admission probability of the three highest-ranked programs and of all
lower-ranked programs evolves over time for two subgroups. In Panel a) we show the average admission
probability for the full sample, in Panel b), c) and d) for the subgroup of applicants with initial risks to
remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group with an initial risk of 0-1% makes
up 80.8%, the group with an initial risk of 1-89% makes up 11.5% and the group with an initial risk of
90-100% makes up 7.7%.

empirical evidence for applicants sorting programs by admission probability. Experiments

show that 15-18% of applicants follow this application strategy (Pais and Pintér, 2008 and

Y. Chen and Sönmez, 2006). Yet, in experiments it is particularly the high-risk applicants

who sort programs by admission probability (Featherstone and Niederle, 2016) whereas

in our case it is the low-risk applicants. Also in real-world applications of the DA mecha-

nism applicants consider admission probability or their beliefs thereof when making their

choices (Arteaga et al., 2022; Bobba and Frisancho, 2022; L. Chen and Pereyra, 2019; Lar-

roucau et al., 2024; Shorrer and Sóvágó, 2023; Shorrer and Sóvágó, 2024). Rees-Jones and

Shorrer (2023) suggest, among others, expectation-based loss aversion as an explanation

for the observed application behavior.

6.2 Beliefs on admission probability and the initial ROL

In the previous analysis, we have to assume that applicants have a preference for competi-

tive programs. For this reason we conclude from Figure 14 that the average applicant mis-

represents their preferences by sorting programs by admission probability. In this section,

we draw on survey data on applicants’ true preferences and their expected admission prob-
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ability thereto to study preference misrepresentation based on a more applicant-specific

measure of preferences.

In 2019, applicants responded to the survey when first logging in to the application

platform. This can be as early as January, when the application platform opens, but ap-

plicants might also register at a later time. At this time, although the application deadline

is not due for long, applicants already (at least partly) established their preferences over

study programs. This is because the registration for state exam subject tests closes in

January. As some programs require the passing or weight the grade of non-mandatory

subject tests, applicants should know about the admission requirements of study pro-

grams to which they want to apply. Thus, already in January, applicants should be (at

least partially) informed about their preferences.

In our previous analyses we show that applicants adjust their application strategy

to signals on admission probability. This could occur in two forms. First, applicants

might consider admission probability in their choices, i.e., omitting zero or low-probability

programs or sorting programs by admission probability. Second, the information signal

on admission probability might encourage applicants to reevaluate their preferences by

investing more search into feasible programs. For this reason, elicited survey preferences

might not be stable over time. Yet, as applicants do not receive any signal on admission

probability prior to submitting their initial ROL, reported survey preferences and expecta-

tions on admission probability should still be accurate at the beginning of the adjustment

period.

Thus, we investigate to what extend survey preferences are reflected in the initial

ROL and whether this is influenced by applicants’ expected admission probability. To

this end, we distinguish four groups of applicants: Applicants who we consider as ”truth-

telling” are those who have all of their reported survey preferences on their initial ROL

and rank them in the order reported in the survey. Here, we allow applicants to rank

their true preference in non-consecutive order as long as the ranking is kept in order. For

example, an applicant might rank their most-preferred program first, a random program

on rank 2 and their second- and third-most preferred program on ranks 3 and 4. This

applicant would still be considered truth-telling. The second group of applicants are those

who consider admission probability by either reordering their true preferences by their

expected admission probability (in descending order) or by omitting programs with a lower

expected admission probability. Again, for the former case, programs can be ordered non-

consecutively as long as programs with a higher expected admission probability are ranked

higher. For the latter case, we allow the minimum expected admission probability required

for an applicant to rank a program on their initial ROL to differ between applicants. If all

programs that an applicant omits have a strictly lower expected admission probability than

all programs that the applicant ranks, the applicant is accounted to this group. The third

group consists of applicants who either omit or reorder their reported survey preferences

but not according to their expected admission probability. The pattern according to which

they misrepresent their preferences in unobserved by us. We call this group ”Random

sorting and omitting”. The last group of students rank none of their reported survey

preferences on their initial ROL.

Due to the way in which we conducted the survey, a single survey preference is
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represented by multiple program IDs. We cannot distinguish highly similar programs (i.e.,

offered by the same faculty and with the same program name) with different program IDs.

For our analysis this implies that if applicants apply to a highly similar program but e.g.

with a different minor than their true preference, we consider them as applying to their

true preference. Thus, we slightly loosen the definition of truth-telling. As a consequence

of this, we observe that some applicants report the same program as their most, second-

most and third-most preferred program. We classify these cases as applicants having only

one survey preference. For these applicants it is enough to rank this one program ID on

their initial ROL to be considered truth-telling. This implies that we likely over-estimate

truth-telling in our results.

Figure 15: Strategic types

Note: Figure shows the distribution of applicants by their strategic type in the initial ROL compared to
the reported survey preferences. We distinguish types by the way in which they deviate from their true
survey preferences in their initial application choices.

Figure 15 shows the group shares. We find that 29.7% of applicants are ”truth-

telling”, i.e., apply according to their reported true survey preferences in their initial ROL.

With 26.1% the group of applicants whose innate belief on expected admission probability

is reflected in their initial ROL is of similar size. Among those, the majority of applicants

omits programs for which they expect admission probability to be low. Overall, only 4.4%

of applicants sort programs by admission probability. The smallest group with 17.3% is

the group of applicants who add none of their survey preferences on their ROL. Last, the

remaining 26.9% of applicants misrepresent their preferences in a way unobserved by us.

These applicants either omit some of their survey preferences but not necessarily those
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Figure 16: Strategic groups, by expected risk to remain unmatched

Note: Figure shows the distribution of applicants by their strategic type in the initial ROL compared to the
reported survey preferences. We distinguish types by the way in which they deviate from their true survey
preferences in their initial application choices. We split applicants into three groups by their expected risk
to remain unmatched to any of their survey preferences. This is computed using the expected admission
probabilities to the top-3 most-preferred programs as reported in the survey.

with the lowest expected admission probability (20.6%) or sort their survey preferences to

something other that expected admission probability (6.3%).

Additionally, we also split the group of ”truth-telling” applicants in two: those

who apply according to their true preferences and by that forego sorting by expected

admission probability and those whose reported true preferences are already sorted by

expected admission probability. The latter group can thus sort programs by admission

probability in the initial ROL while still applying according to their true preferences. With

8.4% the latter group is relatively small. Although we do not know the reason, this group

of applicants seems to have a preference for safer programs.

Compared to experimental research, which reports truth-telling rates of 35 - 91.7%,

the truth-telling rate we find in our real-life application of a DA is slightly below the lower

bound (see Hakimov and Kübler (2021) for an overview of experiments). Still, our lower

truth-telling rate is in line with the literature as truth-telling has been shown to decline in

the complexity of the decision (Y. Chen et al., 2016; Y. Chen and Kesten, 2019; Pais and

Pintér, 2008) and complexity in the Croatian setting with more than 700 study programs

to choose from is arguably more complex than any of the experimental settings. While

experiments find that 15-18% of applicants sort their choices by admission probability

(Y. Chen et al., 2016; Y. Chen and Kesten, 2019; Pais and Pintér, 2008), ranking low-

probability programs below more preferred programs with a higher admission probability,

we find a significantly smaller share of applicants who follow this strategy. Still, the

share of applicants in our setting who consider admission probability in their choices is

significantly higher with 26.1%.

Last, we compare whether applicants expectation of remaining unmatched to their

top-3 reported most preferred programs is related to the initial application choices we

observe. To this end, we compute applicants risk to remain unmatched using the expected

admission probability reported in the survey to their top-3 choices. We split applicants

into three groups with 0-1%, 1-50% and 50-100% expected risk to remain unmatched.

Figure 16 shows that applicants with a high expected risk of not being matched to
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any of their top-3 survey preferences are less than half as likely to be truth-telling. Instead,

40% of these applicants have none of their reported preferences on their ROL. Meanwhile,

34% of applicants with a particularly low risk are truth-telling and only 14.8% have none of

their reported true preferences on their initial ROL. The remaining strategies, considering

admission probability and random sorting or omitting do not differ much between the

three risk-groups. This finding supports the previous findings that beliefs about admission

probability are reflected in strategic choices. A low risk to remain unmatched ”allows”

applicants to be truth-telling, while applicants with a high risk to remain unmatched might

feel urged to reduce their risk by submitting a safer ROL.

Due to the design of the Croatian application system, applicants do not have to

hedge risk in their initial ROL. As they can adjust their ROL at a later point, the risk to

remain unmatched to any of their true preferences should not play a role for the initial

application strategy. Yet, we observe this behavior.

7 Consequences of application strategies

In the previous sections we show mainly two types of application strategies that might

result in suboptimal admission outcomes for applicants. First, Figure 14 shows that ap-

plicants sort programs by admission probability, on average ranking programs with higher

admission probability on ranks 1-3 and programs with lower admission probability on lower

ranks. This is particularly the case for applicants with a low risk to remain unmatched

as shown in Figure 14. Due to this application choice, applicants might be admitted to a

less competitive program than they could reach for. Second, Figure 15 shows that about

21% of applicants omit programs with a low expected admission probability. By this, they

reduce their chance of being admitted to this program to zero.

In this section we investigate whether these strategic application choices are con-

sequential. To this end, we successively adjust the two application strategies described

above. Based on the adjusted ROLs we replicate the DA mechanism and compare to what

extend the admission outcomes improve.

Here, we assume that applicants have a preference for more competitive programs,

an assumption which is not uncommon in the literature.5 In this, we disregard that

applicants might have preferences for other characteristics such as the field of study or

location. To partly address this, we restrict the set of programs based on which we

construct the simulated ROLs to the programs applicants add to their ROL. By that, we

ensure that applicants’ preferences for other characteristics are reflected in our adjusted

ROLs as we base the analysis on programs that applicants actually consider.

7.1 Sorting by admission probability

First, we correct the application strategy of sorting by admission probability. For this,

we consider only the programs on applicants’ final ROLs and thus respect applicants’

final choice on the set of programs they want to apply to. To reverse the application

strategy we sort programs by their admission probability but in ascending order. Under

these adjusted ROLs, applicants apply to the most competitive programs first. Only if not

admitted to any more competitive program, lower ranked programs are considered. As

5For example, Ali and Shorrer (2025) assume that applicants value programs with a low admission
probability higher than less-competitive programs.
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the set of programs on applicants’ ROLs does not change, the risk to remain unmatched

changes only due changes to other applicants’ ROLs.

To evaluate the consequences of applicants applying to ”safer” programs first, we

compare the admission outcome of the simulated scenario to the original matchings ob-

served in the data. Figure 17 shows how differences in admission outcomes are distributed

in 2015. For the largest group of applicants the admission outcomes remain unchanged.

This group includes the 51.9% of applicants who are matched to the same program, but

also the 11.6% of applicants who are not matched to any ranked program under both

scenarios. 24% of applicants improve their matching in the simulated scenario as they are

now matched to a more competitive program. Meanwhile, 9.6% of applicants who were

admitted under the original scenario are not admitted in our simulation. Their matching

outcome worsens as higher scoring applicants who sort programs by admission probabil-

ity in the observed scenario try for more competitive programs first under the simulated

scenario.

Figure 17: Admission outcome in the simulated vs. observed scenario

Note: Figure shows the shares of applicants by the type of change in their admission outcome due to

following the adjusted application strategy. Here, the adjustment is a resorting of the final application

choices by admission probability.

As Figure 14 shows that mostly applicants with a low initial risk to remain un-

matched rank programs according to admission probability, we investigate changes in

admission probability for applicants with a low and high initial risk to remain unmatched

separately. Figure 18 shows the changes in admission outcomes for applicants with an

initial risk to remain unmatched of 0-1%, 1-90% and 90-100% in Panels a), b) and c)

respectively. While the large majority of high-risk applicants are unmatched under both

scenarios, 26% of applicants with a low initial risk to remain unmatched could improve

their matching outcome.
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Figure 18: Admission outcome in the simulated vs. observed scenario, subgroups

Note: Figure shows the shares of applicants by the type of change in their admission outcome due to

following the adjusted application strategy. Here, the adjustment is a resorting of the final application

choices by admission probability. We show the results for three subgroups, with an initial risk to remain

unmatched of 0-1%, 1-90% and 90-100%.

In the scenario we simulate, all applicants apply to the most competitive programs

first. Thus, the changes in admission outcomes not only reflect adjustments in the ap-

plication choices of single applicants. As other higher-scoring applicants consider more

competitive programs first, admission probability to these programs declines for all other

applicants. For this reason, some applicants who were previously admitted, are driven out.

The results could look different if we would only consider the choice of a single applicant

and other applicants’ ROLs remain as they are in the original scenario.
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7.2 Omitting programs with low admission probability

The second application strategy we address is omitting programs with low admission prob-

ability from the ROL completely. Also here, we only consider programs that applicants

consider and by that respect applicants’ preferences for other program characteristics. In

contrast to the previous exercise we restrict the set of programs based on which we con-

struct the adjusted ROL to programs that applicants ever add to any preliminary ROL.

This follows the assumption that applicants add programs to their preliminary ROLs to

learn about their admission probability thereto. After observing a low admission proba-

bility, some applicants might drop a program from their ROL. The results from our RDD

analysis in Section 5 provide evidence for this behavior. Thus, applicants omit programs

for which they have a preference from their ROL due to their perceived admission proba-

bility being low. By constructing a ROL based on all programs ever considered we correct

this application strategy. Here, we disregard that applicants might not add programs

for which they expect admission probability to be zero. For these programs, applicants

might not consider it worth even trying. Thus, also our adjusted ROL reflects beliefs on

admission probability to some extend.

To construct the adjusted ROL we sort all programs an applicant ever considers by

admission probability in ascending order. As applicants can rank at most 10 programs,

we truncate the program ranking of each applicant at 10, such that each simulated ROL

consists of the (at most) 10 most competitive programs the applicant ever considers.

This implies that the adjusted ROL is the most risky ROL that can be constructed from

applicants revealed preferences.

Figure 19: Admission outcome in the simulated vs. observed scenario

Note: Figure shows the shares of applicants by the type of change in their admission outcome due to

following the adjusted application strategy. Here, the adjustment is applying to the ten most competitive

programs ever considered in the adjustment period.

Figure 19 shows that while more than 50% of applicants do not change their ad-

mission outcome in terms of competitiveness of the matched program, 13.4% of applicants
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can improve their application choices under a more risky application strategy. Yet, with

18.1%, the share of applicants who are not matched to any ranked program under the

simulated scenario is even higher. In contrast to the previously simulated scenario, this

share is now not only driven by other applicants choices but also by the more risky choices

of each single applicant. Overall, Figure 19 shows that the average applicant does not

benefit from applying only to the most preferred (most competitive) study programs if

preferences are based solely on competitiveness.

Figure 20: Admission outcome in the simulated vs. observed scenario, subgroups

Note: Figure shows the shares of applicants by the type of change in their admission outcome due to

following the adjusted application strategy. Here, the adjustment is applying to the ten most competitive

programs ever considered in the adjustment period. We show the results for three subgroups, with an

initial risk to remain unmatched of 0-1%, 1-90% and 90-100%.

Also for this simulated scenario we conduct a subgroup analysis, the results of

which are shown in Figure 20. Applicants with a low initial risk to remain unmatched
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benefit more from more risky application choices as 15% of this group can improve their

matching. Still, an even larger fraction of this group remains unmatched to any program

under our simulated scenario although they are admitted under the observed scenario with

18.2% of applicants affected by this. Thus, it is recommendable to add at least some safe

programs to the ROL. Meanwhile, the admission outcome of most applicants with a high

initial risk to remain unmatched does not change. About 80% of applicants in this group

are not admitted to any program under both scenarios and further 5.4% are admitted to

the same program. Yet, also for this group, 10.6% of applicants who would be matched

under the original scenario are not matched in our simulation.

Jointly, these findings show that the majority of applicants is not harmed and about

a quarter of applicants benefits from applying to risky choices first. Yet, applying only

to the most risky of one’s preferred programs can result in not being admitted at all.

Thus, in line with the theory of portfolio choice (Ali and Shorrer, 2025), applying to risky

options first and adding safe options at lower ranks seems like the optimal strategy under

constrained choice.

8 Conclusion

In our study, we investigate the role of beliefs about admission probability for college

application strategies in a repeated DA setting in Croatia. Here, applicants receive hourly

information signals on admission probability, while they can still adjust their application

choices. Over time, they develop their final and binding application strategies. Observing

the information signals and strategic adjustments, we investigate how changing beliefs on

admission probability are reflected in within-applicant changes to application choices.

In four parts, we show that applicants consider their beliefs about admission proba-

bility when deciding on the study programs to which they want to apply. First, we provide

descriptive evidence on the dynamics of the repeated DA induced by strategic adjustments

by applicants. Programs’ cutoff scores fluctuate, resulting in hourly changes in the pre-

liminary admission outcomes and in the information signals on admission probability that

applicants receive via the system. This volatility differs between programs in frequency

and magnitude. Programs with a larger quota experience more fluctuations of smaller

magnitude than programs with a smaller quota.

Second, exploiting the RDD setting of a sharp (preliminary) admission cutoff, we

show that applicants’ subjective beliefs about admission probability feed into their ap-

plication strategy. Applicants who receive a positive preliminary signal on admission

probability are less likely to adjust their application choices than applicants who receive

a negative preliminary signal. Compared to the baseline, the probability of changing for

applicants who receive a negative signal is more than 11-23% higher than for applicants

who receive a positive signal on admission probability. In particular, applicants who re-

ceive a negative preliminary signal on admission probability are more likely to delete the

affected program.

Third, we show how applicants develop their final application strategy over time

and in particular how this differs between applicants with a high and low initial risk of

not being admitted to any of their ranked programs. Applicants with a high initial risk

to remain unmatched improve their application choices over time and by that reduce this
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risk by up to 20 pp on average. They achieve this by swapping programs with a low

admission probability for less risky programs. Meanwhile, applicants with a low initial

risk to remain unmatched shorten their ROL over time and sort programs by admission

probability. Although these adjustments do not affect their risk of remaining unmatched,

sorting by admission probability might result in being matched to a less competitive

program.

Next, we use survey data on the most preferred programs of the applicants and

their expected admission probability to identify application strategies in initial application

choices. We show that the initial ROL already reflects the beliefs of the applicants about

admission probability, with 26% of the applicants omitting programs with lower expected

admission probability or sorting the programs by admission probability.

Finally, we quantify the consequences of two potentially harmful application strate-

gies that we identified in the previous sections by re-running the repeated DA mechanism

based on alternative application choices. First, we correct the application behavior of

sorting by admission probability. Assuming that applicants prefer more competitive pro-

grams, simply resorting the final ROL of applicants improves the admission result of 24%

of applicants. Second, we reverse the application behavior of omitting programs with low

admission probability. We construct for each applicant the most risky ROL from the set

of programs they ever consider. Applying to the most risky ROL can lead to an improved

match for 13.4% of applicants. However, 18.1% of the applicants benefit from adding a

safety program with a higher admission probability to their ROL. These applicants remain

unmatched to any program on the simulated risky ROL while they find a match with their

observed application choices.

With our research, we contribute to the limited empirical literature on application

strategies in real-world applications of DA mechanisms. The unique setting in Croatia

allows us to exploit within-applicant changes in application behavior and show how ap-

plication choices are affected by beliefs on admission probability. To our knowledge, we

are among the first to quantify strategic choices for the entire universe of applicants on a

repeated DA system. Our findings are relevant for the more commonly applied static DA

as well. Although applicants receive precise and applicant-specific information on admis-

sion probabilities, they make suboptimal choices. In a static DA, in which applicants do

not have access to this precise information, any application strategy based on inaccurate

beliefs on admission probability is likely even more detrimental than we observe for the

repeated DA.
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A Appendix

A.1 Volatility in program cutoffs

Figure A1: Cutoff score fluctuations over time (relative to the final cutoff)

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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Figure A2: Initial and final cutoff scores

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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Figure A3: Distribution of programs by number of fluctuations

(a) 2012 (b) 2013

(c) 2014 (d) 2015

42



Figure A4: Distribution of programs by avg. magnitude of fluctuations

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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Figure A5: Number of fluctuations by program characteristics

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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Figure A6: Magnitude of fluctuations by program characteristics

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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A.2 Data

Table A1: Data Summary

2012 2013 2014 2015

Panel a) Timing

publish SE results 9.7. 9.7. 7.7. 13.7.

end of complaints 12.7. 12.7. 14.7. 15.7.

application deadline 17.7. 00am 17.7. 12am 17.7. 12pm 17.7.4pm

Panel b) Overdemand

# programs 717 748 762 773

w/o overdemand 305 435 440 436

with overdemand 412 313 322 337

avg. overdemand 62.3 49.9 56.1 69.4

median 43 35 39 46

25th pctl. 19 15 17 20

75th pctl. 81 64 77 92

Panel c) Direction of cutoff score fluctuations

decrease 222 183 161 196

constant 25 33 22 18

increase 66 80 62 134

Note: In this table we summarize main characteristics of the data. Panel a) shows the dates of the

beginning and end of the adjustment period in each year. Panel b) shows the number of programs with

and without overdemand and the extend of overdemand. Panel c) shows the number of programs by the

direction of cutoff score changes from the beginning to the end of the adjustment period.
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A.3 RDD

A.3.1 RDD samples by bandwidth

Table A2: Summary statistics RDD sample

2012 10% 20% 30% 10% RDD 20% RDD 30% RDD

Min. point distance -11.62 -23.30 -34.71 -8.36 -18.40 -28.75

Max. point distance 14.59 23.78 32.94 10.84 19.72 28.33

Min. rank distance -5.20 -10.67 -15.94 -5.11 -10.35 -15.44

Max. rank distance 5.22 10.67 15.96 5.09 10.43 15.65

Avg. adm.prob. below 0.62 0.54 0.48 0.59 0.51 0.44

Avg. adm.prob. above 0.79 0.83 0.86 0.77 0.82 0.86

2013 10% 20% 30% 10% RDD 20% RDD 30% RDD

Min. point distance -10.90 -21.62 -31.95 -6.59 -15.95 -25.03

Max. point distance 15.11 24.77 33.42 9.28 17.13 25.34

Min. rank distance -4.95 -10.15 -14.98 -4.68 -9.72 -14.32

Max. rank distance 4.99 10.25 15.29 4.78 9.92 14.96

Avg. adm.prob. below 0.78 0.72 0.66 0.74 0.67 0.62

Avg. adm.prob. above 0.88 0.90 0.92 0.86 0.90 0.91

2014 10% 20% 30% 10% RDD 20% RDD 30% RDD

Min. point distance -12.88 -24.74 -34.86 -7.82 -17.15 -26.23

Max. point distance 16.23 26.21 35.47 9.37 18.13 26.65

Min. rank distance -5.17 -10.61 -15.66 -4.97 -9.99 -14.62

Max. rank distance 5.18 10.65 15.91 5.14 10.37 15.62

Avg. adm.prob. below 0.67 0.60 0.55 0.59 0.51 0.44

Avg. adm.prob. above 0.82 0.86 0.89 0.79 0.84 0.87

2015 10% 20% 30% 10% RDD 20% RDD 30% RDD

Min. point distance -12.49 -24.13 -34.18 -6.71 -16.53 -25.16

Max. point distance 15.89 26.28 35.67 9.54 18.25 26.50

Min. rank distance -5.08 -10.48 -15.60 -4.90 -10.13 -15.01

Max. rank distance 5.08 10.49 15.67 5.00 10.32 15.47

Avg. adm.prob. below 0.96 0.94 0.93 0.97 0.95 0.93

Avg. adm.prob. above 0.97 0.98 0.98 0.98 0.98 0.98

Note: In this table we show the range of scores, rank positions and admission probability in each of six

samples. To compute the minimum point distance we take for each program the lowest score within the

sample and subtract the cutoff. We show the average admission probability of applicants above and below

the cutoff. The samples in Columns (1)-(3) are restricted only by the relative rank distance i.e., 10, 20 or

30% of the quota. The samples in Columns (4)-(6) are additionally restricted to the last 10 hours of the

adjustment period and to applicants’ highest ranked programs. These are the samples we use for the RDD

regressions.
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Table A3: Information signals and Probability to change, 2012

Dep. var.: 1[Change] × 100
Point distance Rank distance Above/Below

(1) (2) (3)

Distance -0.0017*** -0.0013*** -0.3572***
(0.0002) (0.0002) (0.0338)

Constant 3.9212*** 3.9117*** 4.1030***
(0.0169) (0.0169) (0.0247)

Program FE No No No
Observations 1,324,032 1,324,032 1,324,032
R-squared 0.0001 0.0001 0.0001

Note: Table shows the coefficients of regressing three different types of information signals on a dichotomous
variable that equals 1 if an applicant changes a program at time t. The information signal in Column 1
is the distance to the cutoff in terms of points. Below the cutoff, the distance is negative, above the
cutoff it is positive. The coefficient of -0.00003 means that as applicants below the cutoff move closer
to the cutoff and applicants above the cutoff move further away by one point, the probability to change
declines by 0.003 pp. Similarly, the information signal in Column 2 is the rank distance to the cutoff. In
Column 3 the information signal is dichotomous and equal to 1 if an applicant is above the cutoff and zero
otherwise. Applicants above the cutoff are 0.65pp less likely to adjust their ROL. Robust standard errors
in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A4: Information signals and Probability to change, 2013

Dep. var.: 1[Change] × 100
Point distance Rank distance Above/Below

(1) (2) (3)

Distance -0.0018*** -0.0016*** -0.3560***
(0.0002) (0.0001) (0.0292)

Constant 3.8520*** 3.8342*** 4.0315***
(0.0146) (0.0147) (0.0210)

Program FE No No No
Observations 1,736,721 1,736,721 1,736,730
R-squared 0.0001 0.0001 0.0001

Note: Table shows the coefficients of regressing three different types of information signals on a dichotomous
variable that equals 1 if an applicant changes a program at time t. The information signal in Column 1
is the distance to the cutoff in terms of points. Below the cutoff, the distance is negative, above the
cutoff it is positive. The coefficient of -0.00003 means that as applicants below the cutoff move closer
to the cutoff and applicants above the cutoff move further away by one point, the probability to change
declines by 0.003 pp. Similarly, the information signal in Column 2 is the rank distance to the cutoff. In
Column 3 the information signal is dichotomous and equal to 1 if an applicant is above the cutoff and zero
otherwise. Applicants above the cutoff are 0.65pp less likely to adjust their ROL. Robust standard errors
in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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Table A5: Information signals and Probability to change, 2014

Dep. var.: 1[Change] × 100
Point distance Rank distance Above/Below

(1) (2) (3)

Distance -0.0013*** -0.0009*** -0.2484***
(0.0001) (0.0001) (0.0246)

Constant 4.6266*** 4.6213*** 4.7532***
(0.0123) (0.0124) (0.0172)

Program FE No No No
Observations 2,917,368 2,917,368 2,917,368
R-squared 0.0000 0.0000 0.0000

Note: Table shows the coefficients of regressing three different types of information signals on a dichotomous
variable that equals 1 if an applicant changes a program at time t. The information signal in Column 1
is the distance to the cutoff in terms of points. Below the cutoff, the distance is negative, above the
cutoff it is positive. The coefficient of -0.00003 means that as applicants below the cutoff move closer
to the cutoff and applicants above the cutoff move further away by one point, the probability to change
declines by 0.003 pp. Similarly, the information signal in Column 2 is the rank distance to the cutoff. In
Column 3 the information signal is dichotomous and equal to 1 if an applicant is above the cutoff and zero
otherwise. Applicants above the cutoff are 0.65pp less likely to adjust their ROL. Robust standard errors
in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

A.3.2 Reduced form

A.3.3 RDD plots

Figure A7: RDD, bw=20%, running variable = rank distance

(a) 2012 (b) 2013

(c) 2014 (d) 2015
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A.3.4 RDD results

Table A6: Distance to cutoff and Probability to change, bandwidth = 0.1, 2012

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.769** -0.667* 0.167 0.870 -1.165 0.013

(0.368) (0.349) (0.881) (1.151) (1.494) (1.728)

Distance -0.001 0.003 -0.020 -0.072 0.161* 0.129

(0.017) (0.021) (0.046) (0.070) (0.084) (0.115)

Constant 4.063 6.735 9.472

Program FE No Yes No Yes No Yes

Observations 18,646 18,646 6,489 6,489 2,807 2,807

# Programs 306 266 210

R-squared 0.0004 0.0002 0.0000 0.0003 0.0014 0.0008

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.

Table A7: Distance to cutoff and Probability to change, bandwidth = 0.1, 2013

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.978** -0.860** 0.016 0.270 -0.303 0.061

(0.399) (0.408) (0.721) (0.843) (1.191) (1.623)

Distance 0.014 0.003 0.050* 0.020 -0.014 -0.040

(0.021) (0.027) (0.028) (0.029) (0.062) (0.064)

Constant 4.216 4.383 4.947

Program FE No Yes No Yes No Yes

Observations 18,691 18,691 6,070 6,070 2,875 2,875

# Programs 282 222 175

R-squared 0.0005 0.0004 0.0007 0.0001 0.0001 0.0001

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A8: Distance to cutoff and Probability to change, bandwidth = 0.1, 2014

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above 0.197 0.248 -0.224 0.395 -0.594 -1.088

(0.372) (0.383) (0.741) (0.866) (1.301) (1.806)

Distance -0.025 -0.037* 0.022 -0.021 0.034 0.030

(0.019) (0.020) (0.030) (0.034) (0.063) (0.094)

Constant 3.343 4.507 5.471

Program FE No Yes No Yes No Yes

Observations 17,503 17,503 5,688 5,688 2,325 2,325

# Programs 238 190 150

R-squared 0.0001 0.0002 0.0001 0.0000 0.0001 0.0001

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.

Table A9: Distance to cutoff and Probability to change, bandwidth = 0.1, 2015

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.451 -0.327 -1.288** -1.245* -2.424*** -3.000***

(0.293) (0.324) (0.585) (0.675) (0.908) (1.096)

Distance -0.002 -0.001 0.061*** 0.056** 0.094*** 0.084

(0.013) (0.014) (0.021) (0.023) (0.034) (0.057)

Constant 3.289 5.473 6.398

Program FE No Yes No Yes No Yes

Observations 25,615 25,615 9,486 9,486 4,547 4,547

# Programs 344 294 239

R-squared 0.0002 0.0001 0.0008 0.0005 0.0017 0.0016

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A10: Distance to cutoff and Probability to change, bandwidth = 0.2, 2012

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.601** -0.519* 0.527 0.459 0.075 -0.034

(0.265) (0.292) (0.579) (0.662) (0.982) (1.226)

Distance -0.017** -0.017* -0.014 -0.021 0.047* 0.055

(0.007) (0.010) (0.014) (0.017) (0.025) (0.037)

Constant 3.997 6.245 8.476

Program FE No Yes No Yes No Yes

Observations 36,294 36,294 13,510 13,510 6,293 6,293

# Programs 311 291 253

R-squared 0.0009 0.0006 0.0001 0.0001 0.0010 0.0007

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.

Table A11: Distance to cutoff and Probability to change, bandwidth = 0.2, 2013

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.902*** -0.955*** -0.236 0.004 -1.036 -0.065

(0.291) (0.294) (0.494) (0.598) (0.754) (0.977)

Distance 0.009 0.007 0.022** 0.006 0.039** 0.015

(0.009) (0.008) (0.011) (0.017) (0.017) (0.020)

Constant 4.129 4.389 5.5

Program FE No Yes No Yes No Yes

Observations 35,870 35,870 12,757 12,757 6,136 6,136

# Programs 288 258 222

R-squared 0.0004 0.0004 0.0004 0.0000 0.0006 0.0001

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A12: Distance to cutoff and Probability to change, bandwidth = 0.2, 2014

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.117 -0.202 -0.594 -0.093 -0.371 -1.045

(0.265) (0.290) (0.492) (0.566) (0.822) (1.089)

Distance -0.005 -0.003 0.020** 0.007 0.021 0.045*

(0.006) (0.009) (0.009) (0.011) (0.018) (0.027)

Constant 3.579 4.494 5.123

Program FE No Yes No Yes No Yes

Observations 32,617 32,617 11,983 11,983 5,310 5,310

# Programs 245 220 187

R-squared 0.0001 0.0000 0.0003 0.0000 0.0003 0.0005

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.

Table A13: Distance to cutoff and Probability to change, bandwidth = 0.3, 2012

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.737*** -0.731*** 0.288 0.297 0.515 0.336

(0.210) (0.221) (0.467) (0.509) (0.748) (0.890)

Distance -0.010*** -0.010* 0.001 -0.000 0.018 0.015

(0.004) (0.005) (0.008) (0.009) (0.011) (0.019)

Constant 3.979 6.304 7.667

Program FE No Yes No Yes No Yes

Observations 52,802 52,802 20,200 20,200 10,047 10,047

# Programs 312 300 278

R-squared 0.0010 0.0008 0.0000 0.0000 0.0007 0.0002

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A14: Distance to cutoff and Probability to change, bandwidth = 0.3, 2013

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.795*** -0.863*** -0.136 0.265 -0.958 -0.470

(0.232) (0.243) (0.405) (0.411) (0.587) (0.735)

Distance 0.003 0.003 0.009 -0.004 0.017** 0.003

(0.005) (0.004) (0.006) (0.008) (0.008) (0.011)

Constant 4.013 4.341 5.148

Program FE No Yes No Yes No Yes

Observations 51,611 51,611 19,682 19,682 9,813 9,813

# Programs 291 270 236

R-squared 0.0003 0.0004 0.0001 0.0000 0.0003 0.0000

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.

Table A15: Distance to cutoff and Probability to change, bandwidth = 0.3, 2014

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.285 -0.406** -0.461 0.041 0.510 0.787

(0.217) (0.199) (0.410) (0.472) (0.684) (0.880)

Distance -0.004 -0.002 0.012** 0.002 0.010 0.020

(0.003) (0.003) (0.006) (0.006) (0.011) (0.015)

Constant 3.674 4.51 4.54

Program FE No Yes No Yes No Yes

Observations 47,581 47,581 17,979 17,979 8,672 8,672

# Programs 249 230 208

R-squared 0.0002 0.0001 0.0002 0.0000 0.0005 0.0008

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A17: Distance to cutoff and Probability to change, bandwidth = 0.1, 2012

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.445 -0.429 -0.213 -0.317 -0.003 -0.003
(0.324) (0.320) (0.253) (0.258) (0.005) (0.005)

Distance 0.011 0.011 -0.010 -0.013 0.001** 0.001**
(0.016) (0.015) (0.013) (0.014) (0.000) (0.000)

Constant 2.989 3.055 .133
Program FE No Yes No Yes No Yes
Observations 18,646 18,646 33,411 33,411 20,638 20,638
# Programs 306 311 307 307
R-squared 0.000108 0.000084 0.000123 0.000169 0.000105 0.000105

Table A18: Distance to cutoff and Probability to change, bandwidth = 0.1, 2013

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.613 -0.501 -0.259 -0.125 0.005 0.005
(0.384) (0.402) (0.286) (0.283) (0.006) (0.006)

Distance 0.012 -0.001 0.007 -0.009 0.000 0.000
(0.020) (0.028) (0.014) (0.019) (0.000) (0.000)

Constant 3.747 3.611 .117
Program FE No Yes No Yes No Yes
Observations 18,691 18,691 32,681 32,681 20,449 20,449
# Programs 282 293 286 286
R-squared 0.000178 0.000159 0.000027 0.000041 0.000127 0.000127

Table A16: Distance to cutoff and Probability to change, bandwidth = 0.3, 2015

Dep. var.: 1[Change] × 100

1st Pref. 2nd Pref. 3rd Pref.

(1) (2) (3) (4) (5) (6)

Above -0.561*** -0.555*** -0.772** -0.636* -1.036** -1.463**

(0.176) (0.180) (0.331) (0.330) (0.483) (0.597)

Distance -0.002 -0.001 0.019*** 0.015*** 0.010 0.013

(0.002) (0.002) (0.004) (0.004) (0.006) (0.008)

Constant 3.464 5.044 5.323

Program FE No Yes No Yes No Yes

Observations 70,042 70,042 29,801 29,801 15,973 15,973

# Programs 353 338 312

R-squared 0.0003 0.0002 0.0006 0.0002 0.0003 0.0004

Note: Table shows the regression results from Equation 1. Columns (1) and (2) show the results for

changes made and signals received for the highest ranked program only. Columns (3) and (4) ((5) and

(6)) show the results for the second-highest (third-highest) ranked program conditional on being below the

cutoff of any higher-ranked program. Robust standard errors in parentheses. * p-value < .1, ** p-value <

.05, *** p-value < .01.
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Table A19: Distance to cutoff and Probability to change, bandwidth = 0.1, 2014

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above 0.259 0.387 0.002 0.072 0.001 0.001
(0.352) (0.370) (0.278) (0.277) (0.005) (0.005)

Distance -0.016 -0.029 -0.011 -0.019 0.000 0.000
(0.018) (0.019) (0.014) (0.013) (0.000) (0.000)

Constant 2.863 3.205 .121
Program FE No Yes No Yes No Yes
Observations 17,503 17,503 29,695 29,695 19,279 19,279
# Programs 238 248 239 239
R-squared 0.000054 0.000107 0.000042 0.000053 0.000004 0.000004

Table A20: Distance to cutoff and Probability to change, bandwidth = 0.1, 2015

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.111 -0.174 -0.370* -0.391* 0.005 0.005
(0.260) (0.287) (0.194) (0.203) (0.005) (0.005)

Distance 0.002 0.012 0.011 0.012 0.001*** 0.001***
(0.011) (0.012) (0.008) (0.008) (0.000) (0.000)

Constant 2.476 2.763 .095
Program FE No Yes No Yes No Yes
Observations 25,615 25,615 48,704 48,704 27,379 27,379
# Programs 344 351 346 346
R-squared 0.000009 0.000029 0.000073 0.000070 0.002418 0.002418

Table A21: Distance to cutoff and Probability to change, bandwidth = 0.2, 2012

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.209 -0.185 -0.220 -0.224 0.001 0.001
(0.231) (0.249) (0.177) (0.206) (0.003) (0.003)

Distance -0.008 -0.010 -0.010** -0.013* 0.000 0.000
(0.006) (0.009) (0.005) (0.008) (0.000) (0.000)

Constant 2.811 3.064 .129
Program FE No Yes No Yes No Yes
Observations 36,294 36,294 67,757 67,757 40,149 40,149
# Programs 311 312 311 311
R-squared 0.000224 0.000186 0.000260 0.000269 0.000009 0.000009

Table A22: Distance to cutoff and Probability to change, bandwidth = 0.2, 2013

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.626** -0.691** -0.545*** -0.439** -0.004 -0.004
(0.281) (0.288) (0.203) (0.203) (0.004) (0.004)

Distance 0.009 0.007 0.011** 0.004 0.000*** 0.000***
(0.008) (0.009) (0.005) (0.006) (0.000) (0.000)

Constant 3.704 3.702 .122
Program FE No Yes No Yes No Yes
Observations 35,870 35,870 66,131 66,131 39,259 39,259
# Programs 288 293 290 290
R-squared 0.000166 0.000195 0.000114 0.000082 0.000185 0.000185
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Table A23: Distance to cutoff and Probability to change, bandwidth = 0.2, 2014

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above 0.003 0.014 -0.230 -0.200 0.000 0.000
(0.250) (0.267) (0.193) (0.210) (0.004) (0.004)

Distance -0.002 -0.002 -0.001 -0.000 0.000 0.000
(0.006) (0.009) (0.004) (0.006) (0.000) (0.000)

Constant 3.133 3.355 .123
Program FE No Yes No Yes No Yes
Observations 32,617 32,617 59,350 59,350 35,968 35,968
# Programs 245 250 245 245
R-squared 0.000006 0.000003 0.000046 0.000026 0.000027 0.000027

Table A24: Distance to cutoff and Probability to change, bandwidth = 0.3, 2012

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.226 -0.232 -0.285** -0.269* -0.001 -0.001
(0.182) (0.182) (0.142) (0.152) (0.003) (0.003)

Distance -0.005 -0.006 -0.006** -0.008** 0.000 0.000
(0.003) (0.004) (0.002) (0.004) (0.000) (0.000)

Constant 2.775 3.116 .129
Program FE No Yes No Yes No Yes
Observations 52,802 52,802 102,237 102,237 58,391 58,391
# Programs 312 313 312 312
R-squared 0.000203 0.000188 0.000264 0.000262 0.000006 0.000006

Table A25: Distance to cutoff and Probability to change, bandwidth = 0.3, 2013

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.568** -0.639*** -0.450*** -0.326** -0.004 -0.004
(0.223) (0.233) (0.161) (0.160) (0.003) (0.003)

Distance 0.004 0.003 0.003 -0.002 0.000*** 0.000***
(0.004) (0.004) (0.003) (0.003) (0.000) (0.000)

Constant 3.622 3.631 .121
Program FE No Yes No Yes No Yes
Observations 51,611 51,611 99,720 99,720 56,497 56,497
# Programs 291 295 292 292
R-squared 0.000161 0.000197 0.000097 0.000102 0.000071 0.000071

Table A26: Distance to cutoff and Probability to change, bandwidth = 0.3, 2014

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.066 -0.117 -0.201 -0.178 -0.002 -0.002
(0.205) (0.198) (0.158) (0.176) (0.002) (0.002)

Distance -0.004 -0.004 -0.002 -0.001 0.000 0.000
(0.003) (0.003) (0.002) (0.003) (0.000) (0.000)

Constant 3.217 3.342 .125
Program FE No Yes No Yes No Yes
Observations 47,581 47,581 89,744 89,744 52,491 52,491
# Programs 249 250 249 249
R-squared 0.000074 0.000053 0.000056 0.000029 0.000004 0.000004
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Table A27: Distance to cutoff and Probability to change, bandwidth = 0.3, 2015

Dep. var.: 1[Delete] × 100 1[Extend] × 100
1st Pref. any Pref. ROL

(1) (2) (3) (4) (5) (6)

Above -0.173 -0.200 -0.417*** -0.419*** -0.001 -0.001
(0.157) (0.159) (0.114) (0.111) (0.003) (0.003)

Distance -0.000 0.001 0.001 0.002 0.000*** 0.000***
(0.002) (0.002) (0.002) (0.001) (0.000) (0.000)

Constant 2.592 2.857 .099
Program FE No Yes No Yes No Yes
Observations 70,042 70,042 147,730 147,730 75,005 75,005
# Programs 353 355 353 353
R-squared 0.000035 0.000023 0.000117 0.000094 0.001463 0.001463

A.3.5 Robustness checks

Table A28: Distance to cutoff and Probability to change, bandwidth = 0.1, 2012

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.938** -0.612 -0.473 -0.274 -0.473 -0.707

(0.475) (0.521) (0.580) (0.651) (0.580) (0.612)

Distance 0.005 -0.006 -0.008 -0.007 -0.008 0.010

(0.024) (0.025) (0.026) (0.037) (0.026) (0.037)

Female 0.601 0.544

(0.504) (0.548)

Above × Female -0.465 0.058

(0.750) (0.855)

Female × Dist 0.013 -0.010

(0.035) (0.042)

Constant 4.288 3.686 3.686

Program FE No Yes No Yes No Yes

Observations 11,497 11,497 7,149 7,149 18,646 18,646

# Programs 274 239 306

R-squared 0.0005 0.0002 0.0003 0.0001 0.0005 0.0004

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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Table A29: Distance to cutoff and Probability to change, bandwidth = 0.1, 2013

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.924* -1.456** -1.065 -1.475** -1.065 -0.751

(0.505) (0.592) (0.650) (0.572) (0.650) (0.549)

Distance 0.012 0.025 0.016 0.032 0.016 0.003

(0.027) (0.039) (0.033) (0.031) (0.033) (0.031)

Female -0.371 0.175

(0.547) (0.545)

Above × Female 0.142 -0.180

(0.823) (0.762)

Female × Dist -0.005 -0.001

(0.043) (0.041)

Constant 4.066 4.437 4.437

Program FE No Yes No Yes No Yes

Observations 11,068 11,068 7,623 7,623 18,691 18,691

# Programs 247 205 282

R-squared 0.0005 0.0008 0.0005 0.0006 0.0005 0.0004

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A30: Distance to cutoff and Probability to change, bandwidth = 0.1, 2014

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above 0.165 0.504 0.284 0.411 0.284 0.057

(0.482) (0.553) (0.578) (0.601) (0.578) (0.582)

Distance -0.023 -0.063*** -0.027 -0.018 -0.027 -0.026

(0.024) (0.021) (0.030) (0.034) (0.030) (0.034)

Female 0.387 0.144

(0.481) (0.526)

Above × Female -0.118 0.287

(0.752) (0.796)

Female × Dist 0.004 -0.017

(0.038) (0.036)

Constant 3.488 3.101 3.101

Program FE No Yes No Yes No Yes

Observations 10,597 10,597 6,906 6,906 17,503 17,503

# Programs 207 189 238

R-squared 0.0001 0.0004 0.0001 0.0001 0.0002 0.0002

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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Table A31: Distance to cutoff and Probability to change, bandwidth = 0.1, 2015

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.402 -0.328 -0.502 -0.375 -0.502 -0.354

(0.383) (0.452) (0.456) (0.450) (0.456) (0.425)

Distance -0.002 -0.001 0.001 -0.003 0.001 0.005

(0.018) (0.020) (0.019) (0.017) (0.019) (0.016)

Female 0.163 0.368

(0.395) (0.394)

Above × Female 0.100 0.050

(0.595) (0.582)

Female × Dist -0.004 -0.009

(0.026) (0.019)

Constant 3.349 3.186 3.186

Program FE No Yes No Yes No Yes

Observations 15,774 15,774 9,841 9,841 25,615 25,615

# Programs 307 267 344

R-squared 0.0001 0.0001 0.0002 0.0001 0.0002 0.0002

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A32: Distance to cutoff and Probability to change, bandwidth = 0.2, 2012

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.703** -0.606* -0.420 -0.629 -0.420 -0.471

(0.343) (0.352) (0.419) (0.498) (0.419) (0.462)

Distance -0.013 -0.017** -0.022* -0.013 -0.022* -0.021

(0.009) (0.008) (0.012) (0.020) (0.012) (0.017)

Female 0.398 0.512

(0.353) (0.341)

Above × Female -0.283 -0.085

(0.542) (0.538)

Female × Dist 0.009 0.006

(0.015) (0.014)

Constant 4.151 3.753 3.753

Program FE No Yes No Yes No Yes

Observations 22,172 22,172 14,122 14,122 36,294 36,294

# Programs 291 267 311

R-squared 0.0008 0.0007 0.0010 0.0005 0.0010 0.0007

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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Table A33: Distance to cutoff and Probability to change, bandwidth = 0.2, 2013

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.665* -0.872** -1.217*** -1.381*** -1.217*** -1.208***

(0.378) (0.428) (0.461) (0.423) (0.461) (0.414)

Distance 0.001 0.002 0.018 0.019 0.018 0.017

(0.012) (0.012) (0.012) (0.013) (0.012) (0.013)

Female -0.480 -0.165

(0.391) (0.370)

Above × Female 0.553 0.454

(0.597) (0.592)

Female × Dist -0.017 -0.018

(0.017) (0.018)

Constant 3.921 4.401 4.401

Program FE No Yes No Yes No Yes

Observations 21,204 21,204 14,666 14,666 35,870 35,870

# Programs 263 234 288

R-squared 0.0003 0.0004 0.0005 0.0006 0.0004 0.0004

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A34: Distance to cutoff and Probability to change, bandwidth = 0.2, 2014

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.182 -0.330 0.001 -0.077 0.001 -0.093

(0.338) (0.375) (0.426) (0.422) (0.426) (0.397)

Distance -0.008 -0.009 -0.002 0.005 -0.002 0.001

(0.008) (0.009) (0.011) (0.012) (0.011) (0.011)

Female 0.148 0.147

(0.351) (0.321)

Above × Female -0.183 -0.157

(0.544) (0.510)

Female × Dist -0.006 -0.007

(0.013) (0.010)

Constant 3.629 3.481 3.481

Program FE No Yes No Yes No Yes

Observations 19,429 19,429 13,188 13,188 32,617 32,617

# Programs 224 210 245

R-squared 0.0002 0.0002 0.0000 0.0000 0.0001 0.0001

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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Table A35: Distance to cutoff and Probability to change, bandwidth = 0.3, 2012

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.806*** -0.818*** -0.626* -0.905** -0.626* -0.709**

(0.270) (0.289) (0.336) (0.352) (0.336) (0.331)

Distance -0.011*** -0.015*** -0.009 -0.002 -0.009 -0.007

(0.004) (0.005) (0.006) (0.008) (0.006) (0.007)

Female 0.260 0.418

(0.286) (0.295)

Above × Female -0.180 -0.051

(0.431) (0.418)

Female × Dist -0.003 -0.005

(0.008) (0.005)

Constant 4.076 3.817 3.817

Program FE No Yes No Yes No Yes

Observations 31,929 31,929 20,873 20,873 52,802 52,802

# Programs 295 274 312

R-squared 0.0012 0.0012 0.0007 0.0006 0.0011 0.0009

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A36: Distance to cutoff and Probability to change, bandwidth = 0.3, 2013

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.696** -0.850** -0.927** -1.052*** -0.927** -1.004***

(0.306) (0.344) (0.363) (0.367) (0.363) (0.352)

Distance 0.001 0.002 0.005 0.005 0.005 0.006

(0.007) (0.008) (0.006) (0.006) (0.006) (0.006)

Female -0.253 -0.020

(0.313) (0.296)

Above × Female 0.231 0.252

(0.474) (0.467)

Female × Dist -0.004 -0.006

(0.009) (0.009)

Constant 3.906 4.158 4.158

Program FE No Yes No Yes No Yes

Observations 30,308 30,308 21,303 21,303 51,611 51,611

# Programs 271 252 291

R-squared 0.0003 0.0004 0.0004 0.0005 0.0004 0.0004

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

62



Table A37: Distance to cutoff and Probability to change, bandwidth = 0.3, 2014

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.285 -0.398 -0.281 -0.307 -0.281 -0.468

(0.277) (0.273) (0.351) (0.325) (0.351) (0.303)

Distance -0.004 -0.003 -0.004 -0.000 -0.004 -0.002

(0.004) (0.004) (0.006) (0.005) (0.006) (0.004)

Female 0.029 0.004

(0.292) (0.247)

Above × Female -0.004 0.099

(0.447) (0.398)

Female × Dist 0.000 0.000

(0.007) (0.004)

Constant 3.685 3.655 3.655

Program FE No Yes No Yes No Yes

Observations 28,425 28,425 19,156 19,156 47,581 47,581

# Programs 233 224 249

R-squared 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.

Table A38: Distance to cutoff and Probability to change, bandwidth = 0.3, 2015

Dep. var.: 1[Change] × 100

Female Male Jointly

(1) (2) (3) (4) (5) (6)

Above -0.621*** -0.558** -0.450 -0.433 -0.450 -0.426

(0.227) (0.244) (0.280) (0.285) (0.280) (0.274)

Distance -0.002 -0.004 -0.002 0.001 -0.002 -0.001

(0.003) (0.004) (0.004) (0.005) (0.004) (0.005)

Female 0.294 0.290

(0.233) (0.233)

Above × Female -0.172 -0.212

(0.360) (0.368)

Female × Dist -0.000 -0.001

(0.005) (0.007)

Constant 3.576 3.281 3.281

Program FE No Yes No Yes No Yes

Observations 42,082 42,082 27,960 27,960 70,042 70,042

# Programs 336 316 353

R-squared 0.0004 0.0003 0.0002 0.0001 0.0004 0.0003

Note: Table shows the regression results from Equation 1 with alternative dependent variables. Columns

(1) and (2) show the results for the probability to delete the highest-ranked program, Columns (3) and (4)

for the probability to delete any ranked program and Columns (5) and (6) for the probability to extend the

ROL when receiving a signal on admission probability for the highest-ranked program. Robust standard

errors in parentheses. * p-value < .1, ** p-value < .05, *** p-value < .01.
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A.3.6 No discontinuity

Figure A8: No discontinuity in counterfactuals, bw = 10%, 2012

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A9: No discontinuity in counterfactuals, bw = 10%, 2013

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A10: No discontinuity in counterfactuals, bw = 10%, 2014

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.
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Figure A11: No discontinuity in counterfactuals, bw = 10%, 2015

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A12: No discontinuity in counterfactuals, bw = 20%, 2012

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A13: No discontinuity in counterfactuals, bw = 20%, 2013

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.
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Figure A14: No discontinuity in counterfactuals, bw = 20%, 2014

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A15: No discontinuity in counterfactuals, bw = 20%, 2015

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A16: No discontinuity in counterfactuals, bw = 30%, 2012

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

66



Figure A17: No discontinuity in counterfactuals, bw = 30%, 2013

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A18: No discontinuity in counterfactuals, bw = 30%, 2014

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.

Figure A19: No discontinuity in counterfactuals, bw = 30%, 2015

(a) Share female
(b) Weighted State Exam
Grades

(c) Weighted High School
Grades

Note: In these figures we explore discontinuities in counterfactuals. In Panel a), the dependent variable is

the share of women, in Panel b) it is weighted state exam grades and in Panel c) it is weighted high school

grades. The blue vertical lines show the 95% confidence bands.
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A.4 Developing a strategy

Figure A20: Simulated admission probability around the admission cutoff

(a) 2012 (b) 2013

(c) 2014 (d) 2015

Note: Figures show the simulated admission probability by the rank distance around the final admission

cutoff.

68



Figure A21: Average risk to remain unmatched over time, by initial risk (2012)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average risk to remain unmatched evolves over time for two subgroups. In
Panel a) we show the average risk for the group with an initial risk to remain unmatched of 0-1%, in Panel
b) we show the same for the group with a high initial risk of 90-100%. The group with an initial risk of
0-1% makes up 77.2%, the group with an initial risk of 1-89% makes up 11.1% and the group with an
initial risk of 90-100% makes up 11.8%.
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Figure A22: Average risk to remain unmatched over time, by initial risk (2013)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average risk to remain unmatched evolves over time for two subgroups. In
Panel a) we show the average risk for the group with an initial risk to remain unmatched of 0-1%, in Panel
b) we show the same for the group with a high initial risk of 90-100%. The group with an initial risk of
0-1% makes up 78.8%, the group with an initial risk of 1-89% makes up 11% and the group with an initial
risk of 90-100% makes up 10.2%.
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Figure A23: Average risk to remain unmatched over time, by initial risk (2014)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average risk to remain unmatched evolves over time for two subgroups. In
Panel a) we show the average risk for the group with an initial risk to remain unmatched of 0-1%, in Panel
b) we show the same for the group with a high initial risk of 90-100%. The group with an initial risk of
0-1% makes up 73.6%, the group with an initial risk of 1-89% makes up 13.2% and the group with an
initial risk of 90-100% makes up 13.2%.
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Figure A24: Average number of ranked programs over time, by initial risk (2012)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average number of ranked programs evolves over time for two subgroups. In
Panel a) we show the average length of the ROL for the full sample, in Panel b), c) and d) for the subgroup
of applicants with initial risks to remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group
with an initial risk of 0-1% makes up 77.2%, the group with an initial risk of 1-89% makes up 11.1% and
the group with an initial risk of 90-100% makes up 11.8%.

72



Figure A25: Average number of ranked programs over time, by initial risk (2013)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average number of ranked programs evolves over time for two subgroups. In
Panel a) we show the average length of the ROL for the full sample, in Panel b), c) and d) for the subgroup
of applicants with initial risks to remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group
with an initial risk of 0-1% makes up 78.8%, the group with an initial risk of 1-89% makes up 11% and
the group with an initial risk of 90-100% makes up 10.2%.
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Figure A26: Average number of ranked programs over time, by initial risk (2014)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average number of ranked programs evolves over time for two subgroups. In
Panel a) we show the average length of the ROL for the full sample, in Panel b), c) and d) for the subgroup
of applicants with initial risks to remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group
with an initial risk of 0-1% makes up 73.6%, the group with an initial risk of 1-89% makes up 13.2% and
the group with an initial risk of 90-100% makes up 13.2%.
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Figure A27: Average risk to remain unmatched over time, by initial risk (2012)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average admission probability of the three highest-ranked programs and of all
lower-ranked programs evolves over time for two subgroups. In Panel a) we show the average admission
probability for the full sample, in Panel b), c) and d) for the subgroup of applicants with initial risks to
remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group with an initial risk of 0-1% makes
up 77.2%, the group with an initial risk of 1-89% makes up 11.1% and the group with an initial risk of
90-100% makes up 11.8%.
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Figure A28: Average risk to remain unmatched over time, by initial risk (2013)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average admission probability of the three highest-ranked programs and of all
lower-ranked programs evolves over time for two subgroups. In Panel a) we show the average admission
probability for the full sample, in Panel b), c) and d) for the subgroup of applicants with initial risks to
remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group with an initial risk of 0-1% makes
up 78.8%, the group with an initial risk of 1-89% makes up 11% and the group with an initial risk of
90-100% makes up 10.2%.
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Figure A29: Average risk to remain unmatched over time, by initial risk (2014)

(a) Full sample (b) 0-1% initial risk to remain unmatched

(c) 2-89% initial risk to remain unmatched (d) 90-100% initial risk to remain unmatched

Note: Figure shows how the average admission probability of the three highest-ranked programs and of all
lower-ranked programs evolves over time for two subgroups. In Panel a) we show the average admission
probability for the full sample, in Panel b), c) and d) for the subgroup of applicants with initial risks to
remain unmatched of 0-1%, 2-89% and 90-100% respectively. The group with an initial risk of 0-1% makes
up 73.6%, the group with an initial risk of 1-89% makes up 13.2% and the group with an initial risk of
90-100% makes up 13.2%.
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