Halle Institute
for Economic Research

Member of the Leibniz Association

IWH TECHNICAL REPORTS

Technical Documentation of Routines

Wilfried Ehrenfeld

12015

Author:
Dr Wilfried Ehrenfeld

Contact:

Dr Cornelia Lang

Coordinator of the IWH Data Centre
Phone: + 49 345 77 53 802

Fax: + 49 345 77 53 820

E-mail: cornelia.lang@iwh-halle.de

Editor: HALLE INSTITUTE FOR ECONOMIC RESEARCH (IWH) - MEMBER OF THE
LEIBNIZ ASSOCIATION
Executive Board: Professor Reint E. Gropp, PhD

Professor Dr Oliver Holtemoller
Dr Tankred Schuhmann

Adress: Kleine Maerkerstrasse 8, D-06108 Halle (Saale), Germany
Postal Address: P.O. Box 11 03 61, D-06017 Halle (Saale), Germany
Phone: +49 345 7753 60

Fax: +49 345 7753 820

Internet: www.iwh-halle.de

All rights reserved

Citation:
Ehrenfeld, Wilfried: RLPC: Record Linkage Pre-Cleaning — Technical Documentation of Routines. IWH Technical
Reports 02/2015. Halle (Saale) 2015.

ISSN 2365-9076

cornelia.lang@iwh-halle.de

RLPC: Record Linkage Pre-Cleaning

Technical Documentation of Routines

Abstract

The primary objective of record linkage is the merger of different data sets on the basis
of an unique identifier. The cases at hand are mostly company data sets from databanks
with company characteristics (e.g. BvD Amadeus/Dafne), patent data sets (e.g. Patstat or
DPMA) and funding data sets (e.g. BMBF funding catalog). These data sets shall be
merged on the basis of the company names. Due to the fact that company names have
varying notations in different databases - for example the corporate structure — a

harmonization and standardization is necessary.

The routines described here implement the record linkage pre-cleaning (RLPC). They are
used to create record linkage compatible names (RLName) from given (actor) names
(Name). This includes converting special characters to ASCIl characters, identifying
corporate structures, isolating and separating bracketed expressions. The result is an
expression which allows for a comparison with other names. Following this pre-cleaning,
record linkage systems can be used to merge several data sets that have been pretreated
in the same way.

Contents

1. Starting basis and outline of the procedure 3
2. Basic routines 4
2.1. PreCleaning.do 4
2.2. Programs_Load.do 6
2.3. Programs_Basic_Routinesdo 0L 6
RLreplace 6
replace_at_end 6
replace_at_beginningo 6
replace_in_middle 7
RLtrim 7

2.4. Programs_Module_Management.do. 7
start_outer_timer Lo 7
stop_outer_timer 7
begin_step 7
end_step L 8
begin_substep 8
end_substep 8
update_clean_hist 8

2.5. Programs_ASCIlI_Routinesdo L. 8
remove_ascii_special_charso 9
remove_special_chars 9
remove_ascii_std_chars 9
char_condensing_one 9
char_condensing_two L 10
char_condensing_RL2 10
condense_spacing_RL2o 10

2.6. Programs_Legform_Routines.do 10
legform_detect 10
set_legform 11

3. Routines of the RLPC steps - step 1 11
3.1. prog_1_1 uppercase.do 12
3.2. prog_1_2_ replace_smgl_codesdo 12
3.3. prog_1_3_replace_coded_chars.do 13
3.4. prog_1_4 replace_bracket_symbolsdo 13
3.5. prog_1_b5_get_bracket_content.do L. 13
3.6. prog_1_6_replace_ascended_charsdo 13
3.7. prog_1_7_replace_and.do. 14

Wilfried Ehrenfeld 1 30.11.2015

4. Routines of the RLPC steps - step 2 14

4.1. prog_2_1_condensing_part_ldo, 15
4.2. prog_2_2_identify_legalformsdoo 15
43. prog_2_2_set_legformdo 15
4.4. prog_2_3_clear_company_word.do 16
45. prog_2_4 clean_namedo 17
4.6. prog_2_5_replace_spelling_variationdo 17
47. prog_2_6_remove_brackets.do 17
5. Routines of the RLPC steps - step 3 18
5.1. prog_3_1_condensing_part_2.do 18
A. Appendix 20
A.1l. Code Statistics 20

List of Figures

RANEEE O

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

Wilfried Ehrenfeld

. Structure of the procedure insteps. 4
: Loading basic routines.o 5
: Functions of step 1 routines. 12
: Functions of step 2 routines. 14
: functions of step 3 routines. 18

2 30.11.2015

1. Starting basis and outline of the procedure

The primary objective of record linkage is the merger of different data sets on the basis of
an unique identifier. The cases at hand are mostly company data sets from databanks with
company characteristics (e.g. BvD Amadeus/Dafne), universities and non-university research
facilities (e.g. Research Explorer - see Ehrenfeld 2015b), as well as patent data sets (e.g.
Patstat/Regpat or DPMA), publication data (e.g. Web of Knowledge) and funding data sets
(e.g. BMBF funding catalog (“Forderkatalog”)). These data sets shall be linked on the basis
of company names. Due to the fact that company names have varying notations in different
databases - for example the corporate structure - a harmonization and standardization is
necessary.

By using the procedures described here an adjusted, record linkage compatible name RLName
is created from a given variable for the (actor) name Name. Therefore, the procedure is
called record linkage pre-cleaning (short: RLPC). The following is a very brief description of
the necessary steps. At the beginning of the procedure some basic variables and routines
are defined. The are needed throughout the procedure. The procedure itself can be divided
into three stages.

The first stage is a character clean up. For this, the actor name is completely converted
to uppercase. It also includes the replacement of German umlauts, accented characters
or characters with coding annotations with their ASCII equivalents. Double spaces in the
name and spaces at the beginning or end of the name are removed. Subsequently, bracket
symbols and notations for “and” are unified and bracketed expressions are extracted.

In a second step all non-ASCII characters are deleted from the name. Then the company
structures of business enterprises are identified. This is done through an identification
table, which currently holds more than 600 notations for different company structures. The
original notations of the corporate structure are subsequently deleted from the company
name. Thereafter, notations of frequently used terms with variable spellings are harmonized.
Finally, all spaces are removed from the expression.

The routines in this report are based on the methods for the harmonization of patent data
described by Magerman, Van Looy, and Song (2006). However, they have been extensively
modified and expanded for the use with the data sets at hand, and translated into a modular
system of Stata routines. After the pre-cleaning pretreated data sets can be merged. These
procedures are well suited for the allocation of slightly varying notations for the same actor
name.

From a technical point of view the problem of slightly differing notations is very different
from the problem of varying denotations for the same institution. Well-known examples
for this are Technical Universities (and their frequently used abbreviation “TU") or the
“classic” Rheinisch-Westfalische Technische Hochschule Aachen (short: RWTH Aachen). In
these cases purely deterministic allocation of original data records or “fuzzy” (probabilistic)

Wilfried Ehrenfeld 3 30.11.2015

methods alone can hardly ensure a reliable allocation. Instead, these cases can be standard-
ized by means of automatized replacement rules or through an additional table for different
notations of the same institution.

Record linkage systems that have been used in the past include the “Merge-Toolbox"
(Schnell, Bachteler, and Reiher 2005 or Schnell, Bachteler, and Bender 2004) and the
commercial software “Fuzzy Dupes”. An implementation in the course of the project
“RegDemo” can be found in Titze et al. (2015) and Ehrenfeld (2015a).

Figure 1 depicts the structural sequence of pre-cleaning. The following describes the
individual stages of the procedure more in-depth.

Basic routines Definition of superordinate variables and routines

RLPC step 1 Character replacement; translation to ASCI|

Character condensation; separation of corporate
RLPC step 2 structures; adjustment of notations; removal of
bracketed expressions

RLPC step 3 Finalizing character condensation

Figure 1: Flowchart: Structure of the procedure in steps.

2. Basic routines

In this stage basic variables are defined and routines are loaded. This allows for the routines
to be provided as programs for the procedure. Figure 2 depicts the sequence of these basic
routines.

2.1. PreCleaning.do

This is the superordinate control file. It is used to activate all other routines. Here the paths
to routines and data sets are defined, the superordinate time measurement is controlled and
additional variables necessary for the RLPC are defined. The procedure uses the following
global paths and file names:

Wilfried Ehrenfeld 4 30.11.2015

Pre-Cleaning.do

Programs_Load.do

Programs_Basic_Routines.do

Superordinate control file.
Calls up all other routines.

Loads all following Programs-Do-Files.
Loads all programloaders of steps 1-3.

Contains basicroutines:
RLreplace; replace_at_end; replace_at_beginning;
replace_in_middle; RLtrim

Programs_Module_Management.do

Programs_ASCIl_Routines.do

Contains routines for module management:
start_outer_timer; stop_outer_timer; begin_step; end_step;
begin_substep; end_substep; update_clean_hist

Contains routines for ASCII characters:
remove_ascii_special_chars;remove_special_chars;
remove_ascii_std_chars;char_condensing_one;
char_condensing_two; char_condensing_RL2;
condense_spacing_RL2

Programs_Legform_Routines.do

Contains routines for the treatment of legal forms:
legform_detect; set_legform

RLPC program loaders
steps 1-3

Programloaders of steps 1-3.

Figure 2: Flowchart: Loading basic routines.

The newly created variables are:

e RLName is generated from the variable Name and will later on contain the name that
has been adjusted, translated into ASCII characters and, if applicable, condensed. This

$workdir is the working directory. This is where the general logfile $1ogname is saved.
$progdir is the path to the programs, which are saved as do-files.

$datadir is the path to the data sets $1oad_dataset and $save_dataset.

$1oad dataset is the file name of the data set to be edited.
$save_dataset is the file name of the treated data set.

$1logname is the file name of the logfile.

variable represents the main outcome of this procedure.

Wilfried Ehrenfeld

5 30.11.2015

e temp_name is the RLName from the last stage. It is used later on for a comparison with
the RLName from the current stage. This is helpful to identify changes (necessary for
clean_hist).

e clean_hist states the steps actually applied to the individual entries of RLName.

e legal form is a company's legal form, which is identified and separated in step 2.2 (see
sections 4.2 and 4.3).

e brackets contains bracketed expressions potentially separated during step 1.5 (see
section 3.5).

2.2. Programs_Load.do

Programs_Load.do loads all of the following do-files and provides the programs contained
therein.

2.3. Programs_Basic_Routines.do

The file Programs_Basic_Routines.do contains several basic programs for the modifica-
tion of the string RLName. Mainly these are commands for replacing character strings.

RLreplace

RLreplace replaces the character string <search string> with the character string <replace-
ment string> in RLName - regardless of the position of <search string> in RLName (normal
replacement).

Usage: RLreplace "<search string>" '"<replacement string>"

replace_at_end

This command replaces the character string <search string> with the character string
<replacement string> in RLName if <search string> is located at the end of RLName.

Usage: replace_at_end "<search string>" "<replacement string>"

replace_at_ beginning

This command replaces the character string <search string> with the character string
<replacement string> in RLName if <search string> is located at the beginning of RLName.

Usage: replace_at_beginning "<search string>" "<replacement string>"

Wilfried Ehrenfeld 6 30.11.2015

replace_in_middle

This command replaces the character string <search string> with the character string
<replacement string> in RLName if <search string> is located in the middle of RLName.
(see RLreplace).

Usage: replace_in middle '"<search string>" "<replacement string>"

RLtrim

RLtrim deletes all spaces at the beginning and the end of RLName, as well as all double
spaces within RLName.

Usage: RLtrim

2.4. Programs_Module_Management.do

start__outer__timer

Starts time measurement through the outer/superordinate timer (timer 1).
Opens the timelog for writing in $workdir/$timelog.

$timelog = "$logname" + "_TimeStats.log"

Usage: start_outer_timer

stop_outer__timer

Stops the outer timer (timer 1) and closes the timelog $timelog.

Usage: stop_outer_timer

begin_step

Can be found at the beginning of a new <step> of the procedure.
Starts the inner timer (timer 2) and replaces the temporary name of the last step
(temp_name) with the current RLName.

Usage: begin_step "<step>"

Wilfried Ehrenfeld 7 30.11.2015

end_step

Can be found at the end of a <step> of the procedure.

Deletes superfluous spaces in RLName (using RLtrim), stops the inner timer (timer 2),
writes the inner time measurement into the timelog and updates the entries on the actually
applied steps (update_clean__hist).

Usage: end_step "<step>"

begin_substep

Can be found at the beginning of each new <sub step> of the procedure.
Starts the timer on level 3 (timer 3).

Usage: begin_substep "<sub step>"

end__substep

Can be found at the end of a <sub step> of the procedure.
Stops the timer on level 3 (timer 3) and writes the time measurement into the Timelog.

Usage: end_substep "<sub step>"

update_clean_hist

Writes the inner time measurement (timer 2) into the timelog and updates the entries on
the actually applied steps in clean_hist. This lists only the numbers of the steps which
actually brought about an alteration in RLName. The identification is done by comparing
temp_name and RLName.

Usage: update_clean _hist
2.5. Programs_ASCII_Routines.do

Each of these routines eliminates a different set of ASCII characters in RLName. They are
used for the string condensing in step 2.1 or 3.1 of the RLPC routines (see section 4.1 or
section 5.1).

Wilfried Ehrenfeld 8 30.11.2015

remove__ascii_special__chars
This command replaces some “special” ASCIl characters in RLName with spaces. They are

the following:

Number | 33-39 | 4244-47 | 58-59 | 61| 63-64 | 92 | 94-96 | 124 | 126 |
Character‘!”#$%&"* —/‘ s ‘:‘ 70 ‘\

A~ ' ‘ ‘ ‘

Usage: remove_ascii_special_chars

remove_special_chars

This command replaces the following special characters in RLName with spaces:
2§
Usage: remove_special_chars

remove__ascii_std__chars

This command replaces all “normal” ASCII characters in RLName with spaces. It is only
used for testing purposes to form the difference of all characters in RLName to the “special”
characters.

These characters are:

Number | 32 | 40-41 | 48-57 | 65-90 | 97-122 |
Character ‘ <Space> ‘ () ‘ 0-9 ‘ A-Z ‘ a-z ‘

Usage: remove_ascii_std_chars

char_condensing_one

This routine replaces all characters in RLName that are not A-Z, 0-9, (,) or <space> with
spaces. A suitable regular expression is used to do this.

Usage: char_condensing one

Wilfried Ehrenfeld 9 30.11.2015

char_condensing__two

This routine deletes all characters in RLName that are not A-Z or 0-9. A suitable regular
expression is used to do this.

In contrast to char_condensing_one, this routine deletes affected characters.
Furthermore, spaces are also deleted here.

Usage: char_condensing_ two

char_condensing_RL2

This routine matches char_condensing_two for (the experimental) RLName?2.

Usage: char_condensing RL2

condense_spacing_RL2

This routine condenses (deletes spaces) names in letter spacing in RLName2. The names
containing letter spacing are identified by their structure following the form “at least three
single letters with spaces between them”. A suitable (nontrivial) regular expression is used
for this.

Subsequently, the routine deletes all superfluous (double) spaces in RLName?2.

Usage: condense_spacing_RL2

2.6. Programs_ Legform_Routines.do

These routines are needed for the identification and separation of legal forms in step 2.2 of
the RLPC routines (see sections 4.2 and 4.3).

legform__detect

This routine recognizes legal forms in RLName and replaces them with their short forms in
RLName. The short form is made recognizable for subsequent steps by inserting « and »
(e.g. «kKG»). The routine takes particularly short long forms (shorter than 5 characters)
at the beginning and the end of RLName into account. These have to be separated by an
additional space in RLName. For recognition in the middle the long form has to be separated
by spaces before and behind it. This measure is implemented in order to reduce incorrectly
(positive) recognized corporate structures.

The list of legal forms (long and short) is:

step_2_2 legal form replacement.tsv.

Wilfried Ehrenfeld 10 30.11.2015

This file has to be in the program directory $progdir and should be sorted by the length
of the long form in descending (!) order. This helps recognizing special forms (e.g. GGMBH
vs. GMBH).

The list currently comprises more than 620 entries. It contains two columns, which are
separated by the <TAB>-character (file extension tsv). It has the following format:

<search text/long form><TAB><short form><CR LF> .

When searching for the legal form, the routine can be told to search at the beginning, the
end or in the middle of RLName. Therefore, “replace_at_end", “replace_at_beginning” or
“replace_in_middle"” can be used as parameters for <replacetype>.

Usage: legform_detect "<replacetype>"

set_legform

This command enters the legal form <set_string> into the (empty) variable legal form if
<search_string> is contained in RLName. This means that the first entry found is maintained.
Typically, the <search_string> is the short form of the legal form marked by « and » (e.g.
«KG») from step 2.2 or the routine legform_detect. The expression <set_string> is then
typically the “normal” short form.

Example: set_legform "«GMBH»" "GMBH".

Usage: set_legform "<search_string>" "<set_string>"

3. Routines of the RLPC steps - step 1

This is where the actual procedure starts. The first step of the RLPC procedure replaces
symbols in RLName or transfers them to standard ASCII characters. Figure 3 shows the
sequence of this first step.

Each program of the RLPC procedure in step 1 through 3 is “framed” by begin_step and
end_step. Oftentimes RLtrim is run in a sub-step as the last routine.

Wilfried Ehrenfeld 11 30.11.2015

prog_1 1 uppercase Capitalize characters
A4
prog_1 2 replace_smgl_codes AdjustSMGL codes
N\
prog_1 3 replace_coded_chars Adjustcoded characters
N\
prog_1_4 replace_bracket_symbols Replacement of bracket symbols
prog_1 5 get bracket_content Bracketed expressions - brackets
N
prog_1 6_replace_ascended_chars Adjustaccented characters
prog_1 7 replace_and Replace expressions for ,and”

Figure 3: Flowchart: Functions of step 1 routines.

3.1. prog_1_1_uppercase.do

This routine converts all letters of RLName into uppercase. Due to the fact that Stata
ignores some characters when using the upper-function, these characters are also replaced
with their uppercase versions. This also relates to German umlauts. Furthermore, “B" is
converted into “SS”.

Usage: prog_1_1_uppercase
Routines used: RLreplace

3.2. prog_1_2_replace_smgl_codes.do

This program translates special characters of the Standard Generalized Markup Language
(SGML) that have not been resolved so far. This includes characters like “&L;".

Wilfried Ehrenfeld 12 30.11.2015

Usage: prog_1_2_replace_smgl codes

Routines used: RLreplace

3.3. prog_1_3_replace_coded_chars.do

This program replaces unresolved specially coded characters with their simplified ASCII
variants. For instance, this routine replaces “{OVERSCORE (A)}" with “A".

Usage: prog_1_3_replace_coded_chars

Routines used: RLreplace

3.4. prog_1_4_replace_bracket_symbols.do

Here the bracket symbols [, { and < are replaced with (. The symbols |, } and > are
replaced with). Double angle brackets (« and ») are deleted.

Usage: prog_1 4 replace_bracket_symbols

Routines used: RLreplace

3.5. prog_1_5_get_bracket_content.do

This routine identifies bracketed expressions in RLName. If a bracketed expression is identified,
it is extracted from RLName and saved in the variable brackets. Should RLName be
completely enclosed in parentheses, only the bracket symbols are removed from RLName. In
this case the variable brackets contains the text “Steht komplett in Klammern".

The content in parentheses in RLName is deleted later on in step 2.6 (section 4.7).
Usage: prog_1_5_get_bracket_content

Routines used: RLtrim

3.6. prog_1_6_replace_ascended_chars.do

This program translates accented characters into their simplified ASCII variants. Example:
“A" is replaced with “A". The German umlauts A, O, U are replaced with AE, OE, UE.

Usage: prog_1 _6_replace_ascended_chars

Routines used: RLreplace

Wilfried Ehrenfeld 13 30.11.2015

3.7. prog_1_7_replace_and.do

This routine replaces terms for “AND" such as “+", “AND", “UND", “U.” and “"ET" with
an ampersand (&).

Usage: prog_1 7_replace_and

Routines used: RLreplace

4. Routines of the RLPC steps - step 2

The second step of the RLPC procedure condenses characters, isolates corporate structures,
adjusts notations and removes bracketed expressions. Figure 4 shows the sequence of this
second step.

Removal of non-ASClI characters.

prog_2_1_condensing_part_1 () <SPACE> aremaintained.

Identification of legal forms.
Source: step 2 2 legal form replacement.tsv

prog_2 2 identify legalforms

step_2_2 set legform Registration of legal forms > legal form

y

Company words not evaluated are marked for
deletion.
prOg_2_3_C|ea r_compa ny_Word Source: step 2 2 common words.tsv

clear_company_word

y

clean_name
Deletes legal forms.

prog_2_ 4 clean_name

Adjusts for varying notations.

prog_Z_S_repIace_s pel l ng_variation Source: prog 2 5 replace spelling variation.tsv

prog_2 6_remove_brackets Removes bracketed expressions.

Figure 4: Flowchart: Functions of step 2 routines.

Wilfried Ehrenfeld 14 30.11.2015

4.1. prog_2_1_condensing_part_1.do

This program removes ASCII special characters and other special characters by use of
the functions remove_ ascii_special_chars and remove_special_chars. This pre-cleaning
measure speeds up the subsequent Regex-based routine significantly.

Afterwards all characters in RLName that are not A-Z, 0-9, (,) or <space> are replaced
with spaces by means of char_condensing_one.

Finally, spaces immediately following opening parentheses are deleted, while also making
sure that there are spaces immediately before all opening parentheses. The same is done
for closing parentheses.

Usage: prog_2_1_condensing part_1

Routines used: remove_ascii_special_chars; remove_special_chars;
RLreplace; RLtrim

4.2. prog_2_2_identify_legalforms.do

This program identifies the legal forms of companies and replaces them with identifiable
short forms with the help of routine legform_detect. To do this the legal forms are searched
for sequentially, first at the beginning, then at the end and finally in the middle.

Since this process is relatively time-consuming, the time measurements for these sub-steps
are recorded separately and written into the timelog (begin_substep; end_substep).

After each of these sub-steps the legal form is written into the variable 1legal form by
means of step_2_2_set_legform.

Usage: prog_2_2_identify_legalforms

Routines used: legform_detect; step_2_2_set_legform; RLtrim

4.3. prog_2_2_set_legform.do

This do-file defines the program step_2_2_set_legform, which writes all of the identified
short forms of legal forms from RLName into the (empty) variable legal_form using the
function set_legform.

Usage: step_2 2_set_legform

Routines used: set_legform

Wilfried Ehrenfeld 15 30.11.2015

4.4. prog_2_3_clear_company_word.do

This program defines the routine clear_company_word, which replaces company words
from RLName that are frequently used but not evaluated here with the place holder
“«". These company words include, for example, “INTERNATIONAL CORPORATION"
or “"GESELLSCHAFT". The double angle brackets “«»" are treated later on in step 2.4
(section 4.5).

It can be specified, whether during the course of the search the company words with a length
of less than 5 characters should be separated with spaces (type = 0) or not (type = 1).
The number and position of the spaces depends on the search position of the company
words (beginning, middle, end) and are used in such a way to consider the various uses of
company words.

The list of company words is:
step_2_2 common_words.tsv.

This file must be located in the program directory $progdir and should be sorted by the
length of the company words in descending (!) order. This way it is easier to recognize
special forms, since they are queried before the general forms.

The list contains two columns, which are separated by the <TAB>-character (file extension
tsv). It has the following format:

<company word><TAB><type><CR LF> .

When searching for the company words, the routine can be told to search at the beginning,
the end or in the middle of RLName. Therefore, “replace_at_end”, “replace_at_beginning”
or “replace_in_middle” can be used as parameters for <replacetype>.

Usage: clear_company_word "<replacetype>"
Routines used: -

Subsequently, this step sequentially runs the program clear_ company_word described

above with the parameters “replace_at_end”, “replace_at_beginning” or “replace_in_middle".
Usage: prog_2_3_clear_company_word

Routines used: clear_company_ word

Wilfried Ehrenfeld 16 30.11.2015

4.5. prog_2_4_clean_name.do

Firstly, this routine defines the program clean name, which deletes the predefined string
“«legal form»"” from RLName.

Usage: clean_name "<«legal form»"

Routines used: -

Secondly, clean_name is run for all known legal forms and “«»", in order to remove them
from RLName.

Usage: prog_2 4 clean_name

Routines used: clean_name; RLtrim

4.6. prog_2_5_replace_spelling_variation.do

This routine identifies a search string in RLName and replaces it with a predefined replace-
ment string. Here, this routine is used to unify notations for company extensions (e.g.
INTERNATIONALE — INTERNATIONAL).

The list of company extensions and the respective replacement strings is:
prog_2_b5_replace_spelling variation.tsv.
This file must be located in the program directory $progdir. The list contains entries in

two columns, which are separated by the <TAB>-character (file extension tsv). It has the
following format:

<search string><TAB><replacement string><CR LF> .

Usage: prog_2_5_replace_spelling variation

Routines used: -

4.7. prog_2_6_remove_brackets.do

Here, all contents of RLName that are enclosed in parentheses are deleted. The parentheses
are removed as well. The contents of these parentheses have already been transferred into
the variable brackets in step 1.5 (section 3.5).

Usage: prog_2_6_remove_brackets

Routines used: -

Wilfried Ehrenfeld 17 30.11.2015

5. Routines of the RLPC steps - step 3

The third and last step of the RLPC procedure condenses all characters in RLName, finalizing
the now RL compatible variable by doing so. Figure 5 depicts the sequence of this third
and last step.

Removal of non-ASClI characters.

prog_3_1_condensing_part_2 () <SPACE> aredeleted.

Figure 5: Flowchart: functions of step 3 routines.

5.1. prog_3_1_condensing_part_2.do

This program deletes all spaces in RLName, as well as parentheses (“(" and “)"). As a
precaution, all characters in RLName that are not A-Z or 0-9 are subsequently deleted by
using char_condensing_ two.

Usage: prog_3_1_condensing part_2

Routines used: RLreplace; char_condensing two

Wilfried Ehrenfeld 18 30.11.2015

References

Ehrenfeld, Wilfried (2015a): RegDemo: Preparation and Merger of Actor Data - Technical
Documentation of Routines and Datasets. IWH Technical Reports 1/2015.

Ehrenfeld, Wilfried (2015b): Research Explorer - Technical Documentation of Routines.
IWH Technical Reports 3/2015.

Ehrenfeld, Wilfried (2015¢c): RLPC: Record Linkage Pre-Cleaning - Technical
Documentation of Routines. IWH Technical Reports 2/2015.

Magerman, Tom, Bart Van Looy, and Xiaoyan Song (2006): Data production methods for
harmonized patent statistics: Patentee name harmonization. Katholieke Universiteit
Leuven MSI 0605.

Schnell, Rainer, Tobias Bachteler, and Stefan Bender (2004): A Toolbox for Record
Linkage. In: Austrian Journal of Statistics 33.1-2, pp. 125-133.

Schnell, Rainer, Tobias Bachteler, and Jorg Reiher (2005): MTB: Ein
Record-Linkage-Programm fiir die empirische Sozialforschung. ZA-Information 2005,
No. 56.

Titze, Mirko, Wilfried Ehrenfeld, Matthias Piontek, and Gunnar Pippel (2015): “Netzwerke
zwischen Hochschulen und Wirtschaft: Ein Mehrebenenansatz.” In: Schrumpfende
Regionen - dynamische Hochschulen: Hochschulstrategien im demografischen Wandel.
Ed. by Michael Fritsch, Peer Pasternack, and Mirko Titze. Wiesbaden: Springer
Fachmedien. Chap. 11, pp. 213-234.

Wilfried Ehrenfeld 19 30.11.2015

A. Appendix

A.1. Code Statistics
Stand: Juli 2015

Modul Anzahl Zeilen
Basic routines
PreCleaning.do 150
Programs__Load.do 34
Programs_Basic__Routines.do 71
Programs_Module_Management.do 126
Programs_ASCII_Routines.do 125
Programs_Legform_Routines.do 91
Routines RLPC step 1
prog_1_1_uppercase.do 98
prog_1_2_replace_smgl_codes.do 52
prog_1_3_replace_coded_chars.do 50
prog_1_4_replace_bracket_symbols.do 28
prog_1_5_get_bracket_content.do 38
prog_1_6_replace_ascended_chars.do 61
prog_1_7_replace_and.do 23
Routines RLPC step 2
prog_2_1_condensing_part_1.do 34
prog_2_2_identify_legalforms.do 37
prog_2_ 2_set_legform.do 57
prog_2_3_clear_company_word.do 82
prog_2_4_clean_name.do 70
prog_2_5_replace_spelling_variation.do 44
prog_2_6_remove_brackets.do 25
Routines RLPC step 3
prog_3_1_condensing_part_2.do 27
Anzahl Module 27
Codezeilen Gesamt 1323

Wilfried Ehrenfeld 20 30.11.2015

Halle Institute for Economic Research (IWH) -
Member of the Leibniz Association

ADDRESS: Kleine Maerkerstrasse 8, D-06108 Halle (Saale), Germany
POSTAL ADDRESS: P.O. Box 11 03 61, D-06017 Halle (Saale), Germany
PHONE: +49 345 7753 60 FAX +49 345 7753 820
INTERNET: www.iwh-halle.de ISSN: 2365-9076

	Ehrenfeld - Dokumentation RLPC_en.pdf
	Starting basis and outline of the procedure
	Basic routines
	PreCleaning.do
	Programs_Load.do
	Programs_Basic_Routines.do
	RLreplace
	replace_at_end
	replace_at_beginning
	replace_in_middle
	RLtrim

	Programs_Module_Management.do
	start_outer_timer
	stop_outer_timer
	begin_step
	end_step
	begin_substep
	end_substep
	update_clean_hist

	Programs_ASCII_Routines.do
	remove_ascii_special_chars
	remove_special_chars
	remove_ascii_std_chars
	char_condensing_one
	char_condensing_two
	char_condensing_RL2
	condense_spacing_RL2

	Programs_Legform_Routines.do
	legform_detect
	set_legform

	Routines of the RLPC steps - step 1
	prog_1_1_uppercase.do
	prog_1_2_replace_smgl_codes.do
	prog_1_3_replace_coded_chars.do
	prog_1_4_replace_bracket_symbols.do
	prog_1_5_get_bracket_content.do
	prog_1_6_replace_ascended_chars.do
	prog_1_7_replace_and.do

	Routines of the RLPC steps - step 2
	prog_2_1_condensing_part_1.do
	prog_2_2_identify_legalforms.do
	prog_2_2_set_legform.do
	prog_2_3_clear_company_word.do
	prog_2_4_clean_name.do
	prog_2_5_replace_spelling_variation.do
	prog_2_6_remove_brackets.do

	Routines of the RLPC steps - step 3
	prog_3_1_condensing_part_2.do

	Appendix
	Code Statistics

