Ökonometrische Methoden für wirtschaftliche Prognosen und Simulationen

Der Forschungsschwerpunkt der Forschungsgruppe liegt in der Entwicklung ökonometrischer Methoden für Kurzfristprognosen (Reduzierte-Form-Modelle), für Regionalisierung und für Langfristprojektionen sowie für strukturelle Prognose- und Simulationsmodelle (DSGE-Modelle). Ferner erstellt sie ökonometrische Hintergrundanalysen für die Prognosetätigkeit der Forschungsgruppe Makroökonomische Analysen und Prognosen. Im Rahmen von Drittmittelprojekten wurden verschiedene makroökonomische Modelle, bspw. für die Volkswagen Financial Services AG oder im Rahmen von GIZ-Projekten für die Wirtschaftsministerien in Kirgistan und Tadschikistan sowie das Institut für makroökonomische Prognosen und Forschung (IFMR) in Usbekistan entwickelt.

IWH-Datenprojekt: IWH Real-time Database

Forschungscluster
Gesamtwirtschaftliche Dynamik und Stabilität

Ihr Kontakt

Dr. Katja Heinisch
Dr. Katja Heinisch
Mitglied - Abteilung Makroökonomik
Nachricht senden +49 345 7753-836

PROJEKTE

01.2016 ‐ 12.2017

Entwicklung eines analytischen Tools basierend auf einer Input-Output-Tabelle

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Das Ziel des Projektes war die Entwicklung eines Exceltools zur Wirkungsanalyse von Politikmaßnahmen in Tadschikistan basierend auf dem statischen Input-Output-Ansatz.

Dr. Katja Heinisch

01.2017 ‐ 12.2017

Unterstützung einer nachhaltigen Wirtschaftsentwicklung in ausgewählten Regionen Usbekistans

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr. Andrej Drygalla

01.2017 ‐ 12.2017

Short-term Macroeconomic Forecasting Model in Ministry of Economic Development and Trade of Ukraine

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr. Andrej Drygalla

01.2018 ‐ 12.2023

EuropeAid (EU-Rahmenvertrag)

Europäische Kommission

Professor Dr. Oliver Holtemöller

11.2015 ‐ 12.2016

Beschäftigung und Entwicklung in der Republik Usbekistan

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Förderung einer nachhaltigen wirtschaftlichen Entwicklung in ausgewählten Regionen Usbekistans

Dr. Katja Heinisch

05.2016 ‐ 05.2016

Rahmenbedingungen und Finanzierungsmöglichkeiten für die Entwicklung des Privatsektors in Tadschikistan

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr. Katja Heinisch

07.2016 ‐ 12.2018

Klimaschutz und Kohleausstieg: Politische Strategien und Maßnahmen bis 2030 und darüber hinaus

Umweltbundesamt (UBA)

Dr. Katja Heinisch

02.2016 ‐ 04.2016

Makroökonomische Reformen und umwelt- und sozialverträgliches Wachstum in Vietnam

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr. Katja Heinisch

Referierte Publikationen

cover_journal-of-economic-perspectives.jpg

On DSGE Models

Lawrence J. Christiano Martin S. Eichenbaum Mathias Trabandt

in: Journal of Economic Perspectives, Nr. 3, 2018

Abstract

The outcome of any important macroeconomic policy change is the net effect of forces operating on different parts of the economy. A central challenge facing policymakers is how to assess the relative strength of those forces. Economists have a range of tools that can be used to make such assessments. Dynamic stochastic general equilibrium (DSGE) models are the leading tool for making such assessments in an open and transparent manner. We review the state of mainstream DSGE models before the financial crisis and the Great Recession. We then describe how DSGE models are estimated and evaluated. We address the question of why DSGE modelers—like most other economists and policymakers—failed to predict the financial crisis and the Great Recession, and how DSGE modelers responded to the financial crisis and its aftermath. We discuss how current DSGE models are actually used by policymakers. We then provide a brief response to some criticisms of DSGE models, with special emphasis on criticism by Joseph Stiglitz, and offer some concluding remarks.

Publikation lesen

cover_empirical-economics.jpg

Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment

Katja Heinisch Rolf Scheufele

in: Empirical Economics, Nr. 2, 2018

Abstract

In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.

Publikation lesen

cover_applied-economics-letters.jpg

The European Refugee Crisis and the Natural Rate of Output

Katja Heinisch Klaus Wohlrabe

in: Applied Economics Letters, Nr. 16, 2017

Abstract

The European Commission follows a harmonized approach for calculating structural (potential) output for EU member states that takes into account labour as an important ingredient. This article shows how the recent huge migrants’ inflow to Europe affects trend output. Due to the fact that the immigrants immediately increase the working population but effectively do not enter the labour market, we illustrate that the potential output is potentially upward biased without any corrections. Taking Germany as an example, we find that the average medium-term potential growth rate is lower if the migration flow is modelled adequately compared to results based on the unadjusted European Commission procedure.

Publikation lesen

cover_applied-economics-letters.jpg

Impulse Response Analysis in a Misspecified DSGE Model: A Comparison of Full and Limited Information Techniques

Sebastian Giesen Rolf Scheufele

in: Applied Economics Letters, Nr. 3, 2016

Abstract

In this article, we examine the effect of estimation biases – introduced by model misspecification – on the impulse responses analysis for dynamic stochastic general equilibrium (DSGE) models. Thereby, we use full and limited information estimators to estimate a misspecified DSGE model and calculate impulse response functions (IRFs) based on the estimated structural parameters. It turns out that IRFs based on full information techniques can be unreliable under misspecification.

Publikation lesen

cover_journal-of-macroeconomics.gif

Effects of Incorrect Specification on the Finite Sample Properties of Full and Limited Information Estimators in DSGE Models

Sebastian Giesen Rolf Scheufele

in: Journal of Macroeconomics, June 2016

Abstract

In this paper we analyze the small sample properties of full information and limited information estimators in a potentially misspecified DSGE model. Therefore, we conduct a simulation study based on a standard New Keynesian model including price and wage rigidities. We then study the effects of omitted variable problems on the structural parameter estimates of the model. We find that FIML performs superior when the model is correctly specified. In cases where some of the model characteristics are omitted, the performance of FIML is highly unreliable, whereas GMM estimates remain approximately unbiased and significance tests are mostly reliable.

Publikation lesen

Arbeitspapiere

cover_DP_2019-18.jpg

How Forecast Accuracy Depends on Conditioning Assumptions

Carola Engelke Katja Heinisch Christoph Schult

in: IWH-Diskussionspapiere, Nr. 18, 2019

Abstract

This paper examines the extent to which errors in economic forecasts are driven by initial assumptions that prove to be incorrect ex post. Therefore, we construct a new data set comprising an unbalanced panel of annual forecasts from different institutions forecasting German GDP and the underlying assumptions. We explicitly control for different forecast horizons to proxy the information available at the release date. Over 75% of squared errors of the GDP forecast comove with the squared errors in their underlying assumptions. The root mean squared forecast error for GDP in our regression sample of 1.52% could be reduced to 1.13% by setting all assumption errors to zero. This implies that the accuracy of the assumptions is of great importance and that forecasters should reveal the framework of their assumptions in order to obtain useful policy recommendations based on economic forecasts.

Publikation lesen

cover_DP_2019-16.jpg

Power Generation and Structural Change: Quantifying Economic Effects of the Coal Phase-out in Germany

Christoph Schult Katja Heinisch Oliver Holtemöller

in: IWH-Diskussionspapiere, Nr. 16, 2019

Abstract

In the fight against global warming, the reduction of greenhouse gas emissions is a major objective. In particular, a decrease in electricity generation by coal could contribute to reducing CO2 emissions. Using a multi-region dynamic general equilibrium model, this paper studies potential economic consequences of a coal phase-out in Germany. Different regional phase-out scenarios are simulated with varying timing structures. We find that a politically induced coal phase-out would lead to an increase in the national unemployment rate by about 0.10 percentage points from 2020 to 2040, depending on the specific scenario. The effect on regional unemployment rates varies between 0.18 to 1.07 percentage points in the lignite regions. However, a faster coal phase-out can lead to a faster recovery. The coal phase-out leads to migration from German lignite regions to German non-lignite regions and reduces the labour force in the lignite regions by 10,000 people by 2040.

Publikation lesen

cover_DP_2019-07.jpg

(Since When) Are East and West German Business Cycles Synchronised?

Stefan Gießler Katja Heinisch Oliver Holtemöller

in: IWH-Diskussionspapiere, Nr. 7, 2019

Abstract

This paper analyses whether and since when East and West German business cycles are synchronised. We investigate real GDP, unemployment rates and survey data as business cycle indicators and employ several empirical methods. Overall, we find that the regional business cycles have synchronised over time. GDP-based indicators and survey data show a higher degree of synchronisation than the indicators based on unemployment rates. However, recently synchronisation among East and West German business cycles seems to become weaker, in line with international evidence.

Publikation lesen

cover_DP_2017-33.jpg

Progressive Tax-like Effects of Inflation: Fact or Myth? The U.S. Post-war Experience

Matthias Wieschemeyer Bernd Süssmuth

in: IWH-Diskussionspapiere, Nr. 33, 2017

Abstract

Inflation and earnings growth can push some tax payers into higher brackets in the absence of inflation-indexed schedules. Moreover, inflation may affect the composition of individuals’ income sources. As a result, depending on the relative tax burden of labour and capital, inflation may decrease or increase the difference between before-tax and after-tax income. However, whether some and if so which percentiles of the income distribution net benefit from inflation via taxation is a widely unexplored question. We make use of a novel dataset on U.S. pre-tax and post-tax income distribution series provided by Pike ty et al. (2018) for the years 1962 to 2014 to answer this question. To this end, we estimate local projections to quantify dynamic effects. We find that inflation shocks increase progressivity of taxation not only contemporaneously but also with some repercussion of several years after the shock. While particularly the bottom two quintiles gain in share, it is not the top but the fourth quintile that lastingly loses.

Publikation lesen

Cover_IWH-Discussion-Papers_2016.jpg

Outperforming IMF Forecasts by the Use of Leading Indicators

Katja Drechsel Sebastian Giesen Axel Lindner

in: IWH-Diskussionspapiere, Nr. 4, 2014

Abstract

This study analyzes the performance of the IMF World Economic Outlook forecasts for world output and the aggregates of both the advanced economies and the emerging and developing economies. With a focus on the forecast for the current and the next year, we examine whether IMF forecasts can be improved by using leading indicators with monthly updates. Using a real-time dataset for GDP and for the indicators we find that some simple single-indicator forecasts on the basis of data that are available at higher frequency can significantly outperform the IMF forecasts if the publication of the Outlook is only a few months old.

Publikation lesen
Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoWeltoffen Logo