Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Empirical Economics,
Nr. 1,
2020
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Artikel Lesen
Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Artikel Lesen
How Forecast Accuracy Depends on Conditioning Assumptions
Carola Engelke, Katja Heinisch, Christoph Schult
IWH Discussion Papers,
Nr. 18,
2019
Abstract
This paper examines the extent to which errors in economic forecasts are driven by initial assumptions that prove to be incorrect ex post. Therefore, we construct a new data set comprising an unbalanced panel of annual forecasts from different institutions forecasting German GDP and the underlying assumptions. We explicitly control for different forecast horizons to proxy the information available at the release date. Over 75% of squared errors of the GDP forecast comove with the squared errors in their underlying assumptions. The root mean squared forecast error for GDP in our regression sample of 1.52% could be reduced to 1.13% by setting all assumption errors to zero. This implies that the accuracy of the assumptions is of great importance and that forecasters should reveal the framework of their assumptions in order to obtain useful policy recommendations based on economic forecasts.
Artikel Lesen
Qual VAR Revisited: Good Forecast, Bad Story
Makram El-Shagi, Gregor von Schweinitz
Journal of Applied Economics,
Nr. 2,
2016
Abstract
Due to the recent financial crisis, the interest in econometric models that allow to incorporate binary variables (such as the occurrence of a crisis) experienced a huge surge. This paper evaluates the performance of the Qual VAR, originally proposed by Dueker (2005). The Qual VAR is a VAR model including a latent variable that governs the behavior of an observable binary variable. While we find that the Qual VAR performs reasonable well in forecasting (outperforming a probit benchmark), there are substantial identification problems even in a simple VAR specification. Typically, identification in economic applications is far more difficult than in our simple benchmark. Therefore, when the economic interpretation of the dynamic behavior of the latent variable and the chain of causality matter, use of the Qual VAR is inadvisable.
Artikel Lesen
Financial Factors in Macroeconometric Models
Sebastian Giesen
Volkswirtschaft, Ökonomie, Shaker Verlag GmbH, Aachen,
2013
Abstract
The important role of credit has long been identified as a key factor for economic development (see e.g. Wicksell (1898), Keynes (1931), Fisher (1933) and Minsky (1957, 1964)). Even before the financial crisis most researchers and policy makers agreed that financial frictions play an important role for business cycles and that financial turmoils can result in severe economic downturns (see e.g. Mishkin (1978), Bernanke (1981, 1983), Diamond (1984), Calomiris (1993) and Bernanke and Gertler (1995)). However, in practice researchers and policy makers mostly used simplified models for forecasting and simulation purposes. They often neglected the impact of financial frictions and emphasized other non financial market frictions when analyzing business cycle fluctuations (prominent exceptions include Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1999) and Christiano, Motto, and Rostagno (2010)). This has been due to the fact that most economic downturns did not seem to be closely related to financial market failures (see Eichenbaum (2011)). The outbreak of the subprime crises ― which caused panic in financial markets and led to the default of Lehman Brothers in September 2008 ― then led to a reconsideration of such macroeconomic frameworks (see Caballero (2010) and Trichet (2011)). To address the economic debate from a new perspective, it is therefore necessary to integrate the relevant frictions which help to explain what we have experienced during recent years.
In this thesis, I analyze different ways to incorporate relevant frictions and financial variables in macroeconometric models. I discuss the potential consequences for standard statistical inference and macroeconomic policy. I cover three different aspects in this work. Each aspect presents an idea in a self-contained unit. The following paragraphs present more detail on the main topics covered.
Artikel Lesen
Qual VAR Revisited: Good Forecast, Bad Story
Makram El-Shagi, Gregor von Schweinitz
Abstract
Due to the recent financial crisis, the interest in econometric models that allow to incorporate binary variables (such as the occurrence of a crisis) experienced a huge surge. This paper evaluates the performance of the Qual VAR, i.e. a VAR model including a latent variable that governs the behavior of an observable binary variable. While we find that the Qual VAR performs reasonably well in forecasting (outperforming a probit benchmark), there are substantial identification problems. Therefore, when the economic interpretation of the dynamic behavior of the latent variable and the chain of causality matter, the Qual VAR is inadvisable.
Artikel Lesen
The Halle Economic Projection Model
Sebastian Giesen, Oliver Holtemöller, Juliane Scharff, Rolf Scheufele
Economic Modelling,
Nr. 4,
2012
Abstract
In this paper we develop an open economy model explaining the joint determination of output, inflation, interest rates, unemployment and the exchange rate in a multi-country framework. Our model -- the Halle Economic Projection Model (HEPM) -- is closely related to studies published by Carabenciov et al. Our main contribution is that we model the Euro area countries separately. In doing so, we consider Germany, France, and Italy which represent together about 70 percent of Euro area GDP. The model combines core equations of the New-Keynesian standard DSGE model with empirically useful ad-hoc equations. We estimate this model using Bayesian techniques and evaluate the forecasting properties. Additionally, we provide an impulse response analysis and a historical shock decomposition.
Artikel Lesen