Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Heinisch, Rolf Scheufele
Empirical Economics,
Nr. 2,
2018
Abstract
In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.
Artikel Lesen
The Quantity Theory Revisited: A New Structural Approach
Makram El-Shagi, Sebastian Giesen
Macroeconomic Dynamics,
Nr. 1,
2015
Abstract
We propose a unified identification scheme to identify monetary shocks and track their propagation through the economy. We combine three approaches dealing with the consequences of monetary shocks. First, we adjust a state space version of the P-star type model employing money overhang as the driving force of inflation. Second, we identify the contemporaneous impact of monetary policy shocks by applying a sign restriction identification scheme to the reduced form given by the state space signal equations. Third, to ensure that our results are not distorted by the measurement error exhibited by the official monetary data, we employ the Divisia M4 monetary aggregate provided by the Center for Financial Stability. Our approach overcomes one of the major difficulties of previous models by using a data-driven identification of equilibrium velocity. Thus, we are able to show that a P-star model can fit U.S. data and money did indeed matter in the United States.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay. In a simulated out-of-sample experiment we evaluate the different modelling strategies conditional on the given state of information and depending on the model averaging technique. The proposed approach is computationally simple and can be easily implemented as a nowcasting tool. Finally, this method also allows retracing the driving forces of the forecast and hence enables the interpretability of the forecast outcome.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay.
Artikel Lesen