Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Heinisch, Rolf Scheufele
Empirical Economics,
Nr. 2,
2018
Abstract
In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay. In a simulated out-of-sample experiment we evaluate the different modelling strategies conditional on the given state of information and depending on the model averaging technique. The proposed approach is computationally simple and can be easily implemented as a nowcasting tool. Finally, this method also allows retracing the driving forces of the forecast and hence enables the interpretability of the forecast outcome.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay.
Artikel Lesen
The Performance of Short-term Forecasts of the German Economy before and during the 2008/2009 Recession
Katja Drechsel, Rolf Scheufele
International Journal of Forecasting,
Nr. 2,
2012
Abstract
The paper analyzes the forecasting performance of leading indicators for industrial production in Germany. We focus on single and pooled leading indicator models both before and during the financial crisis. Pairwise and joint significant tests are used to evaluate single indicator models as well as forecast combination methods. In addition, we investigate the stability of forecasting models during the most recent financial crisis.
Artikel Lesen