Regional, Individual and Political Determinants of FOMC Members' Key Macroeconomic Forecasts
Stefan Eichler, Tom Lähner
Journal of Forecasting,
Nr. 1,
2018
Abstract
We study Federal Open Market Committee members' individual forecasts of inflation and unemployment in the period 1992–2004. Our results imply that Governors and Bank presidents forecast differently, with Governors submitting lower inflation and higher unemployment rate forecasts than bank presidents. For Bank presidents we find a regional bias, with higher district unemployment rates being associated with lower inflation and higher unemployment rate forecasts. Bank presidents' regional bias is more pronounced during the year prior to their elections or for nonvoting bank presidents. Career backgrounds or political affiliations also affect individual forecast behavior.
Artikel Lesen
Predicting Earnings and Cash Flows: The Information Content of Losses and Tax Loss Carryforwards
Sandra Dreher, Sebastian Eichfelder, Felix Noth
Abstract
We analyse the relevance of losses, accounting information on tax loss carryforwards, and deferred taxes for the prediction of earnings and cash flows up to four years ahead. We use a unique hand-collected panel of German listed firms encompassing detailed information on tax loss carryforwards and deferred taxes from the tax footnote. Our out-of-sample predictions show that considering accounting information on tax loss carryforwards and deferred taxes does not enhance the accuracy of performance forecasts and can even worsen performance predictions. We find that common forecasting approaches that treat positive and negative performances equally or that use a dummy variable for negative performance can lead to biased performance forecasts, and we provide a simple empirical specification to account for that issue.
Artikel Lesen
Inflation Dynamics During the Financial Crisis in Europe: Cross-sectional Identification of Long-run Inflation Expectations
Geraldine Dany-Knedlik, Oliver Holtemöller
IWH Discussion Papers,
Nr. 10,
2017
Abstract
We investigate drivers of Euro area inflation dynamics using a panel of regional Phillips curves and identify long-run inflation expectations by exploiting the crosssectional dimension of the data. Our approach simultaneously allows for the inclusion of country-specific inflation and unemployment-gaps, as well as time-varying parameters. Our preferred panel specification outperforms various aggregate, uni- and multivariate unobserved component models in terms of forecast accuracy. We find that declining long-run trend inflation expectations and rising inflation persistence indicate an altered risk of inflation expectations de-anchoring. Lower trend inflation, and persistently negative unemployment-gaps, a slightly increasing Phillips curve slope and the downward pressure of low oil prices mainly explain the low inflation rate during the recent years.
Artikel Lesen
Optimizing Policymakers' Loss Functions in Crisis Prediction: Before, Within or After?
Peter Sarlin, Gregor von Schweinitz
Abstract
Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The expost threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.
Artikel Lesen
Should Forecasters Use Real-time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence
Katja Heinisch, Rolf Scheufele
Abstract
In this paper we investigate whether differences exist among forecasts using real-time or latest-available data to predict gross domestic product (GDP). We employ mixed-frequency models and real-time data to reassess the role of survey data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real-time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
Artikel Lesen