Cover_IWH-Discussion-Papers_2016.jpg
published in: Macroeconomic Dynamics

Optimizing Policymakers' Loss Functions in Crisis Prediction: Before, Within or After?

Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The ex-post threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.

09. June 2015

Authors P. Sarlin Gregor von Schweinitz

Suggested Reading

cover_macroeconomic-dynamics.jpg

Optimizing Policymakers’ Loss Functions in Crisis Prediction: Before, Within or After?

Peter Sarlin Gregor von Schweinitz

in: Macroeconomic Dynamics, forthcoming

Abstract

Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The expost threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.

read publication

Whom to contact

For Researchers

For Journalists

Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoWeltoffen Logo