Financial Technologies and the Effectiveness of Monetary Policy Transmission
Iftekhar Hasan, Boreum Kwak, Xiang Li
Abstract
This study investigates whether and how financial technologies (FinTech) influence the effectiveness of monetary policy transmission. We use an interacted panel vector autoregression model to explore how the effects of monetary policy shocks change with regional-level FinTech adoption. Results indicate that FinTech adoption generally mitigates the transmission of monetary policy to real GDP, consumer prices, bank loans, and housing prices, with the most significant impact observed in the weakened transmission to bank loan growth. The relaxed financial constraints, regulatory arbitrage, and intensified competition are the possible mechanisms underlying the mitigated transmission.
Read article
Energy Markets and Global Economic Conditions
Christiane Baumeister, Dimitris Korobilis, Thomas K. Lee
Abstract
This paper evaluates alternative indicators of global economic activity and other market fundamentals in terms of their usefulness for forecasting real oil prices and global petroleum consumption. We find that world industrial production is one of the most useful indicators that has been proposed in the literature. However, by combining measures from a number of different sources we can do even better. Our analysis results in a new index of global economic conditions and new measures for assessing future tightness of energy demand and expected oil price pressures.
Read article
The Effects of Fiscal Policy in an Estimated DSGE Model – The Case of the German Stimulus Packages During the Great Recession
Andrej Drygalla, Oliver Holtemöller, Konstantin Kiesel
Macroeconomic Dynamics,
No. 6,
2020
Abstract
In this paper, we analyze the effects of the stimulus packages adopted by the German government during the Great Recession. We employ a standard medium-scale dynamic stochastic general equilibrium (DSGE) model extended by non-optimizing households and a detailed fiscal sector. In particular, the dynamics of spending and revenue variables are modeled as feedback rules with respect to the cyclical components of output, hours worked and private investment. Based on the estimated rules, fiscal shocks are identified. According to the results, fiscal policy, in particular public consumption, investment, and transfers prevented a sharper and prolonged decline of German output at the beginning of the Great Recession, suggesting a timely response of fiscal policy. The overall effects, however, are small when compared to other domestic and international shocks that contributed to the economic downturn. Our overall findings are not sensitive to considering fiscal foresight.
Read article
The Evolution of Monetary Policy in Latin American Economies: Responsiveness to Inflation under Different Degrees of Credibility
Stefan Gießler
IWH Discussion Papers,
No. 9,
2020
Abstract
This paper investigates the forward-lookingness of monetary policy related to stabilising inflation over time under different degrees of central bank credibility in the four largest Latin American economies, which experienced a different transition path to the full-fledged inflation targeting regime. The analysis is based on an interest rate-based hybrid monetary policy rule with time-varying coefficients, which captures possible shifts from a backward-looking to a forward-looking monetary policy rule related to inflation stabilisation. The main results show that monetary policy is fully forward-looking and exclusively reacts to expected inflation under nearly perfect central bank credibility. Under a partially credible central bank, monetary policy is both backward-looking and forward-looking in terms of stabilising inflation. Moreover, monetary authorities put increasingly more priority on stabilising expected inflation relative to actual inflation if central bank credibility tends to improve over time.
Read article
Why are some Chinese Firms Failing in the US Capital Markets? A Machine Learning Approach
Gonul Colak, Mengchuan Fu, Iftekhar Hasan
Pacific-Basin Finance Journal,
June
2020
Abstract
We study the market performance of Chinese companies listed in the U.S. stock exchanges using machine learning methods. Predicting the market performance of U.S. listed Chinese firms is a challenging task due to the scarcity of data and the large set of unknown predictors involved in the process. We examine the market performance from three different angles: the underpricing (or short-term market phenomena), the post-issuance stock underperformance (or long-term market phenomena), and the regulatory delistings (IPO failure risk). Using machine learning techniques that can better handle various data problems, we improve on the predictive power of traditional estimations, such as OLS and logit. Our predictive model highlights some novel findings: failed Chinese companies have chosen unreliable U.S. intermediaries when going public, and they tend to suffer from more severe owners-related agency problems.
Read article
How Forecast Accuracy Depends on Conditioning Assumptions
Carola Engelke, Katja Heinisch, Christoph Schult
IWH Discussion Papers,
No. 18,
2019
Abstract
This paper examines the extent to which errors in economic forecasts are driven by initial assumptions that prove to be incorrect ex post. Therefore, we construct a new data set comprising an unbalanced panel of annual forecasts from different institutions forecasting German GDP and the underlying assumptions. We explicitly control for different forecast horizons to proxy the information available at the release date. Over 75% of squared errors of the GDP forecast comove with the squared errors in their underlying assumptions. The root mean squared forecast error for GDP in our regression sample of 1.52% could be reduced to 1.13% by setting all assumption errors to zero. This implies that the accuracy of the assumptions is of great importance and that forecasters should reveal the framework of their assumptions in order to obtain useful policy recommendations based on economic forecasts.
Read article
HIP, RIP, and the Robustness of Empirical Earnings Processes
Florian Hoffmann
Quantitative Economics,
No. 3,
2019
Abstract
The dispersion of individual returns to experience, often referred to as heterogeneity of income profiles (HIP), is a key parameter in empirical human capital models, in studies of life‐cycle income inequality, and in heterogeneous agent models of life‐cycle labor market dynamics. It is commonly estimated from age variation in the covariance structure of earnings. In this study, I show that this approach is invalid and tends to deliver estimates of HIP that are biased upward. The reason is that any age variation in covariance structures can be rationalized by age‐dependent heteroscedasticity in the distribution of earnings shocks. Once one models such age effects flexibly the remaining identifying variation for HIP is the shape of the tails of lag profiles. Credible estimation of HIP thus imposes strong demands on the data since one requires many earnings observations per individual and a low rate of sample attrition. To investigate empirically whether the bias in estimates of HIP from omitting age effects is quantitatively important, I thus rely on administrative data from Germany on quarterly earnings that follow workers from labor market entry until 27 years into their career. To strengthen external validity, I focus my analysis on an education group that displays a covariance structure with qualitatively similar properties like its North American counterpart. I find that a HIP model with age effects in transitory, persistent and permanent shocks fits the covariance structure almost perfectly and delivers small and insignificant estimates for the HIP component. In sharp contrast, once I estimate a standard HIP model without age‐effects the estimated slope heterogeneity increases by a factor of thirteen and becomes highly significant, with a dramatic deterioration of model fit. I reach the same conclusions from estimating the two models on a different covariance structure and from conducting a Monte Carlo analysis, suggesting that my quantitative results are not an artifact of one particular sample.
Read article
Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks
Christiane Baumeister, James D. Hamilton
American Economic Review,
No. 5,
2019
Abstract
Traditional approaches to structural vector autoregressions (VARs) can be viewed as special cases of Bayesian inference arising from very strong prior beliefs. These methods can be generalized with a less restrictive formulation that incorporates uncertainty about the identifying assumptions themselves. We use this approach to revisit the importance of shocks to oil supply and demand. Supply disruptions turn out to be a bigger factor in historical oil price movements and inventory accumulation a smaller factor than implied by earlier estimates. Supply shocks lead to a reduction in global economic activity after a significant lag, whereas shocks to oil demand do not.
Read article
(Since When) Are East and West German Business Cycles Synchronised?
Stefan Gießler, Katja Heinisch, Oliver Holtemöller
Abstract
This paper analyses whether and since when East and West German business cycles are synchronised. We investigate real GDP, unemployment rates and survey data as business cycle indicators and employ several empirical methods. Overall, we find that the regional business cycles have synchronised over time. GDP-based indicators and survey data show a higher degree of synchronisation than the indicators based on unemployment rates. However, recently synchronisation among East and West German business cycles seems to become weaker, in line with international evidence.
Read article
For How Long Do IMF Forecasts of World Economic Growth Stay Up-to-date?
Katja Heinisch, Axel Lindner
Applied Economics Letters,
No. 3,
2019
Abstract
This study analyses the performance of the International Monetary Fund (IMF) World Economic Outlook output forecasts for the world and for both the advanced economies and the emerging and developing economies. With a focus on the forecast for the current year and the next year, we examine the durability of IMF forecasts, looking at how much time has to pass so that IMF forecasts can be improved by using leading indicators with monthly updates. Using a real-time data set for GDP and for indicators, we find that some simple single-indicator forecasts on the basis of data that are available at higher frequency can significantly outperform the IMF forecasts as soon as the publication of the IMF’s Outlook is only a few months old. In particular, there is an obvious gain using leading indicators from January to March for the forecast of the current year.
Read article