Forecasting Economic Activity Using a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to the
German GDP
Oliver Holtemöller, Boris Kozyrev
IWH Discussion Papers,
No. 6,
2024
Abstract
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between “normal” times and situations where the time-series behavior is very different from “normal” times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
Read article
Exploring Accounting Research Topic Evolution: An Unsupervised Machine Learning Approach
June Cao, Zhanzhong Gu, Iftekhar Hasan
Journal of International Accounting Research,
No. 3,
2023
Abstract
This study explores the evolution of accounting research by utilizing an unsupervised machine learning approach. We aim to identify the latent topics of accounting from the 1980s up to 2018, the dynamics and emerging topics of accounting research, and the economic reasons behind those changes. First, based on 23,220 articles from 46 accounting journals, we identify 55 topics using the latent Dirichlet allocation model. To illustrate the connection between topics, we use HistCite to generate a citation map along a timeline. The citation clusters demonstrate the “tribalism” phenomenon in accounting research. We then implement the dynamic topic model to reveal the dynamics of topics to show changes in accounting research. The emerging research trends are identified from the topic analytics. We further explore the economic reasons and in-depth insights into the topic evolution, indicating the economic development embeddedness nature of accounting research.
Read article
Courses
Courses Courses are organised in coordination with partner institutions within the Central-German Doctoral Program Economics (CGDE) network. IWH organises First-Year Courses in…
See page
East Germany
The Nasty Gap 30 years after unification: Why East Germany is still 20% poorer than the West Dossier In a nutshell The East German economic convergence process is hardly…
See page
Archive
Media Response Archive 2021 2020 2019 2018 2017 2016 December 2021 IWH: Ausblick auf Wirtschaftsjahr 2022 in Sachsen mit Bezug auf IWH-Prognose zu Ostdeutschland: "Warum Sachsens…
See page
Alumni
IWH Alumni The IWH maintains contact with its former employees worldwide. We involve our alumni in our work and keep them informed, for example, with a newsletter. We also plan…
See page
Department Profiles
Research Profiles of the IWH Departments All doctoral students are allocated to one of the four research departments (Financial Markets – Laws, Regulations and Factor Markets –…
See page
CompNet
CompNet - The Competitiveness Research Network The Competitiveness Research Network (CompNet) provides a forum for high level research and policy analysis in the areas of…
See page
Standards
Achieving Scientific Quality and Meeting Social Standards In order to secure the highest standards, the courses and the research projects will be evaluated. Evaluations form the…
See page
Productivity
Productivity: More with Less by Better Available resources are scarce. To sustain our society's income and living standards in a world with ecological and demographic change, we…
See page