Dr Katja Heinisch

Dr Katja Heinisch
Current Position

since 1/13

Head of the Research Group Econometric Tools for Macroeconomic Forecasting and Simulation

Halle Institute for Economic Research (IWH) – Member of the Leibniz Association

since 9/09

Economist in the Department of Macroeconomics

Halle Institute for Economic Research (IWH) – Member of the Leibniz Association

Research Interests

  • international macroeconomics
  • applied time series econometrics and short-term forecasting
  • macroeconometric modeling

Katja Heinisch joined the Department of Macroeconomics in September 2009. Her research focuses on short-term forecasting and macroeconometric modelling.

Katja Heinisch earned a diploma from Chemnitz University of Technology and University of Strasbourg. She received her PhD from Osnabrück University. Katja Heinisch gained international research experience while working at the European Central Bank (ECB) and the International Monetary Fund (IMF).

Your contact

Dr Katja Heinisch
Dr Katja Heinisch
Mitglied - Department Macroeconomics
Send Message +49 345 7753-836

Publications

Recent Publications

cover_Energy-Economics.gif

Power Generation and Structural Change: Quantifying Economic Effects of the Coal Phase-out in Germany

Christoph Schult Katja Heinisch Oliver Holtemöller

in: Energy Economics, forthcoming

Abstract

In the fight against global warming, the reduction of greenhouse gas emissions is a major objective. In particular, a decrease in electricity generation by coal could contribute to reducing CO2 emissions. We study potential economic consequences of a coal phase-out in Germany, using a multi-region dynamic general equilibrium model. Four regional phase-out scenarios before the end of 2040 are simulated. We find that the worst case phase-out scenario would lead to an increase in the aggregate unemployment rate by about 0.13 [0.09 minimum; 0.18 maximum] percentage points from 2020 to 2040. The effect on regional unemployment rates varies between 0.18 [0.13; 0.22] and 1.07 [1.00; 1.13] percentage points in the lignite regions. A faster coal phase-out can lead to a faster recovery. The coal phase-out leads to migration from German lignite regions to German non-lignite regions and reduces the labour force in the lignite regions by 10,100 [6300; 12,300] people by 2040. A coal phase-out until 2035 is not worse in terms of welfare, consumption and employment compared to a coal-exit until 2040.

read publication

cover_flash_2020q3q4.png

IWH-Flash-Indikator III. Quartal und IV. Quartal 2020

Katja Heinisch Oliver Holtemöller Axel Lindner Birgit Schultz

in: IWH Flash Indicator, No. 3, 2020

Abstract

Die Corona-Pandemie hat die deutsche Wirtschaft im Frühjahr 2020 in eine tiefe Rezession gerissen. Das Bruttoinlandsprodukt sank im zwei­ten Quartal 2020 um 10,1%, nach einem Rückgang von 2,0% im Quartal zuvor. Dieser massive Wirtschaftseinbruch war insbesondere den Lockdown-Maßnahmen geschuldet, die das öffentliche und wirtschaft­liche Leben zeitweise auf ein Minimum reduzierten. Seit Anfang Mai wurden die Restriktionen zur Eindämmung der Pandemie gelockert, und die wirtschaftlichen Aktivitäten haben wieder deutlich zugenom­men. Der Tiefpunkt der Rezession ist also durchschritten, allerdings dürfte die Rückkehr zum Vorkrisenniveau auch aufgrund der wieder höheren Fallzahlen und der damit verbundenen Unsicherheit noch länger auf sich warten lassen. Die Wirtschaft dürfte im dritten Quartal 2020 um 4,6% und im vierten Quartal dann um 4,0% expandieren. (vgl. Abbildung).

read publication

cover_flash_2020q2q3.jpg

IWH-Flash-Indikator II. Quartal und III. Quartal 2020

Katja Heinisch Oliver Holtemöller Axel Lindner Birgit Schultz

in: IWH Flash Indicator, No. 2, 2020

Abstract

Die Corona-Pandemie hat dazu geführt, dass das deutsche Bruttoinlandsprodukt im ersten Quartal 2020 um 2,2% im Vergleich zum Vorquartal gesunken ist. Dieser starke Rückgang ist vor allem auf die im Laufe des Monats März in Deutschland und in anderen Ländern eingeführten Maßnahmen zur Eindämmung des Virus zurückzuführen. Bereits aus anderen Gründen war das Bruttoinlandsprodukt schon im vierten Quartal 2019 leicht zurückgegangen. Die Rezession wird sich im laufenden Quartal noch weiter vertiefen und das Bruttoinlandsprodukt um 7,2% zurückgehen, weil bis Mitte Mai die Restriktionen zur Eindämmung der Pandemie noch gravierend waren, aber auch weil private Haushalte und Unternehmen eine Vielzahl von wirtschaftlichen Aktivitäten individuell eingeschränkt haben. Im dritten Quartal 2020 dürfte die Produktion dann wieder zulegen, sofern die Eindämmungsmaßnahmen weiter gelockert werden können (vgl. Abbildung 1).

read publication

 

Refereed Publications

cover_Energy-Economics.gif

Power Generation and Structural Change: Quantifying Economic Effects of the Coal Phase-out in Germany

Christoph Schult Katja Heinisch Oliver Holtemöller

in: Energy Economics, forthcoming

Abstract

In the fight against global warming, the reduction of greenhouse gas emissions is a major objective. In particular, a decrease in electricity generation by coal could contribute to reducing CO2 emissions. We study potential economic consequences of a coal phase-out in Germany, using a multi-region dynamic general equilibrium model. Four regional phase-out scenarios before the end of 2040 are simulated. We find that the worst case phase-out scenario would lead to an increase in the aggregate unemployment rate by about 0.13 [0.09 minimum; 0.18 maximum] percentage points from 2020 to 2040. The effect on regional unemployment rates varies between 0.18 [0.13; 0.22] and 1.07 [1.00; 1.13] percentage points in the lignite regions. A faster coal phase-out can lead to a faster recovery. The coal phase-out leads to migration from German lignite regions to German non-lignite regions and reduces the labour force in the lignite regions by 10,100 [6300; 12,300] people by 2040. A coal phase-out until 2035 is not worse in terms of welfare, consumption and employment compared to a coal-exit until 2040.

read publication

cover_jahrbuecher-fuer-nationaloekonomie-und-statistik.jpg

(Since when) are East and West German business Cycles Synchronised?

Stefan Gießler Katja Heinisch Oliver Holtemöller

in: Jahrbücher für Nationalökonomie und Statistik, forthcoming

Abstract

We analyze whether, and since when, East and West German business cycles are synchronised. We investigate real GDP, unemployment rates and survey data as business cycle indicators and we employ several empirical methods. Overall, we find that the regional business cycles have synchronised over time. GDP-based indicators and survey data show a higher degree of synchronisation than the indicators based on unemployment rates. However, synchronisation among East and West German business cycles seems to have become weaker again recently.

read publication

cover_empirical-economics.jpg

Nowcasting East German GDP Growth: a MIDAS Approach

João Carlos Claudio Katja Heinisch Oliver Holtemöller

in: Empirical Economics, forthcoming

Abstract

Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.

read publication

Working Papers

cover_DP_2019-18.jpg

How Forecast Accuracy Depends on Conditioning Assumptions

Carola Engelke Katja Heinisch Christoph Schult

in: IWH Discussion Papers, No. 18, 2019

Abstract

This paper examines the extent to which errors in economic forecasts are driven by initial assumptions that prove to be incorrect ex post. Therefore, we construct a new data set comprising an unbalanced panel of annual forecasts from different institutions forecasting German GDP and the underlying assumptions. We explicitly control for different forecast horizons to proxy the information available at the release date. Over 75% of squared errors of the GDP forecast comove with the squared errors in their underlying assumptions. The root mean squared forecast error for GDP in our regression sample of 1.52% could be reduced to 1.13% by setting all assumption errors to zero. This implies that the accuracy of the assumptions is of great importance and that forecasters should reveal the framework of their assumptions in order to obtain useful policy recommendations based on economic forecasts.

read publication

cover_DP_2019-07.jpg

(Since When) Are East and West German Business Cycles Synchronised?

Stefan Gießler Katja Heinisch Oliver Holtemöller

in: IWH Discussion Papers, No. 7, 2019

Abstract

This paper analyses whether and since when East and West German business cycles are synchronised. We investigate real GDP, unemployment rates and survey data as business cycle indicators and employ several empirical methods. Overall, we find that the regional business cycles have synchronised over time. GDP-based indicators and survey data show a higher degree of synchronisation than the indicators based on unemployment rates. However, recently synchronisation among East and West German business cycles seems to become weaker, in line with international evidence.

read publication

Cover_IWH-Discussion-Papers_2016.jpg

Outperforming IMF Forecasts by the Use of Leading Indicators

Katja Drechsel Sebastian Giesen Axel Lindner

in: IWH Discussion Papers, No. 4, 2014

Abstract

This study analyzes the performance of the IMF World Economic Outlook forecasts for world output and the aggregates of both the advanced economies and the emerging and developing economies. With a focus on the forecast for the current and the next year, we examine whether IMF forecasts can be improved by using leading indicators with monthly updates. Using a real-time dataset for GDP and for the indicators we find that some simple single-indicator forecasts on the basis of data that are available at higher frequency can significantly outperform the IMF forecasts if the publication of the Outlook is only a few months old.

read publication
Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoWeltoffen Logo