Econometric Tools for Macroeconomic Forecasting and Simulation

This research group advances the development and application of quantitative macroeconometric models to improve the accuracy, transparency, and policy relevance of macroeconomic forecasts and simulations. Its work supports the empirical and methodological foundation of the IWH’s forecasting activities and policy recommendations.

The group focuses on both short-term forecasting and simulation-based assessments of long-term economic developments, with particular attention to the interactions between economic activity and the environment. Key areas of expertise include reduced-form models for short-term forecasting, regional disaggregation of macroeconomic trends, structural forecasting techniques, and Dynamic Stochastic General Equilibrium (DSGE) models for scenario analysis.

In addition to its core research, the group develops customized forecasting tools and conducts applied analyses in third-party funded projects. Recent collaborations include model development for Volkswagen Bank, economic ministries in Central Asia (supported by GIZ), the German Environment Agency (UBA), and the EU Horizon 2020 project ENTRANCES, which addresses clean energy transitions in European regions.

By integrating rigorous econometric methods with practical applications, the group contributes to a better understanding of macroeconomic dynamics and enhances the basis for evidence-based policy decisions at national and international levels.

Research Cluster
Economic Dynamics and Stability

Your contact

Dr Katja Heinisch
Dr Katja Heinisch
- Department Macroeconomics
Send Message +49 345 7753-836 LinkedIn profile

EXTERNAL FUNDING

07.2022 ‐ 12.2026

Evaluation of the InvKG and the federal STARK programme

German Federal Ministry for Economic Affairs and Climate Action

On behalf of the Federal Ministry of Economics and Climate Protection, the IWH and the RWI are evaluating the use of the approximately 40 billion euros the federal government is providing to support the coal phase-out regions..

See project page

12.2024 ‐ 02.2026

Macroeconomic Modelling for Energy Investments in Vietnam

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr Katja Heinisch

08.2024 ‐ 03.2025

Strengthening Public Financial Management in Vietnam

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr Katja Heinisch

01.2023 ‐ 12.2023

Early determination of stable results for gross domestic product or real economic growth and gross value added at federal state level

Landesbetrieb Information und Technik Nordrhein-Westfalen

The project examines whether the accuracy of the first estimate of gross value added and gross domestic product for the federal states can be increased, thereby reducing the extent of subsequent revisions.

 See project page

Professor Dr Oliver Holtemöller

01.2018 ‐ 12.2023

EuropeAid (EU Framework Contract)

Europäische Kommission

Professor Dr Oliver Holtemöller

05.2020 ‐ 09.2023

ENTRANCES: Energy Transitions from Coal and Carbon: Effects on Societies

Europäische Kommission

ENTRANCES aims at examining the effects of the coal phase-out in Europe. How does the phase-out transform society – and what can politics do about it?

see project's webpage

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 883947.

Professor Dr Oliver Holtemöller
Dr Katja Heinisch

10.2019 ‐ 01.2023

Climate Resilient Economic Development

Climate change has a substantial impact on economic growth and a country’s development. This increases the need for reliable and viable approaches to assessing the impact of climate risks and potential adaptation scenarios. Political decision-makers in ministries of planning and economy need sound forecasts in order to design and finance adequate economic policy instruments and actively to take countermeasures. In the pilot countries (Georgia, Kazakhstan and Vietnam), climate risk is included in macroeconomic modelling, enabling the results to be integrated into the policy process so as to facilitate adapted economic planning. The IWH team is responsible for macroeconomic modelling in Vietnam.

see project's page on GIZ website

Dr Katja Heinisch

07.2016 ‐ 12.2018

Climate Protection and Coal Phaseout: Political Strategies and Measures up to 2030 and beyond

Dr Katja Heinisch

01.2017 ‐ 12.2017

Support to Sustainable Economic Development in Selected Regions of Uzbekistan

Dr Andrej Drygalla

01.2017 ‐ 12.2017

Short-term Macroeconomic Forecasting Model in Ministry of Economic Development and Trade of Ukraine

Dr Andrej Drygalla

01.2016 ‐ 12.2017

Development of analytical tools based on Input-Output table

The aim of the project was the development of an analytical tool to assess the gains and losses of possible state programs supporting the development of the private sector of the Tajik economy.

Dr Katja Heinisch

11.2015 ‐ 12.2016

Employment and Development in the Republic of Uzbekistan

Support to sustainable economic development in selected regions of Uzbekistan

Dr Katja Heinisch

05.2016 ‐ 05.2016

Framework and Finance for Private Sector Development in Tajikistan

Dr Katja Heinisch

02.2016 ‐ 04.2016

Macroeconomic Reforms and Green Growth - Assessment of economic modelling capacity in Vietnam

Dr Katja Heinisch

10.2015 ‐ 03.2016

Improved Evidence-based Policy Making - GIZ Tadschikistan

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Dr Katja Heinisch

Refereed Publications

cover_journal-of-applied-econometrics.gif

Should We Use Linearized Models To Calculate Fiscal Multipliers?

Jesper Lindé Mathias Trabandt

in: Journal of Applied Econometrics, No. 7, 2018

Abstract

We calculate the magnitude of the government consumption multiplier in linearized and nonlinear solutions of a New Keynesian model at the zero lower bound. Importantly, the model is amended with real rigidities to simultaneously account for the macroeconomic evidence of a low Phillips curve slope and the microeconomic evidence of frequent price changes. We show that the nonlinear solution is associated with a much smaller multiplier than the linearized solution in long‐lived liquidity traps, and pin down the key features in the model which account for the difference. Our results caution against the common practice of using linearized models to calculate fiscal multipliers in long‐lived liquidity traps.

read publication

cover_journal-of-economic-perspectives.jpg

On DSGE Models

Lawrence J. Christiano Martin S. Eichenbaum Mathias Trabandt

in: Journal of Economic Perspectives, No. 3, 2018

Abstract

The outcome of any important macroeconomic policy change is the net effect of forces operating on different parts of the economy. A central challenge facing policymakers is how to assess the relative strength of those forces. Economists have a range of tools that can be used to make such assessments. Dynamic stochastic general equilibrium (DSGE) models are the leading tool for making such assessments in an open and transparent manner. We review the state of mainstream DSGE models before the financial crisis and the Great Recession. We then describe how DSGE models are estimated and evaluated. We address the question of why DSGE modelers—like most other economists and policymakers—failed to predict the financial crisis and the Great Recession, and how DSGE modelers responded to the financial crisis and its aftermath. We discuss how current DSGE models are actually used by policymakers. We then provide a brief response to some criticisms of DSGE models, with special emphasis on criticism by Joseph Stiglitz, and offer some concluding remarks.

read publication

cover_empirical-economics.jpg

Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment

Katja Heinisch Rolf Scheufele

in: Empirical Economics, No. 2, 2018

Abstract

In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.

read publication

cover_applied-economics-letters.jpg

The European Refugee Crisis and the Natural Rate of Output

Katja Heinisch Klaus Wohlrabe

in: Applied Economics Letters, No. 16, 2017

Abstract

The European Commission follows a harmonized approach for calculating structural (potential) output for EU member states that takes into account labour as an important ingredient. This article shows how the recent huge migrants’ inflow to Europe affects trend output. Due to the fact that the immigrants immediately increase the working population but effectively do not enter the labour market, we illustrate that the potential output is potentially upward biased without any corrections. Taking Germany as an example, we find that the average medium-term potential growth rate is lower if the migration flow is modelled adequately compared to results based on the unadjusted European Commission procedure.

read publication

cover_applied-economics-letters.jpg

Impulse Response Analysis in a Misspecified DSGE Model: A Comparison of Full and Limited Information Techniques

Sebastian Giesen Rolf Scheufele

in: Applied Economics Letters, No. 3, 2016

Abstract

In this article, we examine the effect of estimation biases – introduced by model misspecification – on the impulse responses analysis for dynamic stochastic general equilibrium (DSGE) models. Thereby, we use full and limited information estimators to estimate a misspecified DSGE model and calculate impulse response functions (IRFs) based on the estimated structural parameters. It turns out that IRFs based on full information techniques can be unreliable under misspecification.

read publication

Working Papers

cover_DP_2021-7.jpg

Conditional Macroeconomic Forecasts: Disagreement, Revisions and Forecast Errors

Alexander Glas Katja Heinisch

in: IWH Discussion Papers, No. 7, 2021

Abstract

Using data from the European Central Bank‘s Survey of Professional Forecasters, we analyse the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the heterogeneity, updating and ex-post performance of predictions for inflation, real GDP growth and the unemployment rate are related to assumptions about future oil prices, exchange rates, interest rates and wage growth. Our findings indicate that inflation forecasts are closely associated with oil price expectations, whereas expected interest rates are used primarily to predict output growth and unemployment. Expectations about exchange rates and wage growth also matter for macroeconomic forecasts, albeit less so than oil prices and interest rates. We show that survey participants can considerably improve forecast accuracy for macroeconomic outcomes by reducing prediction errors for external conditions. Our results contribute to a better understanding of the expectation formation process of experts.

read publication

cover_DP_2021-2.jpg

Disentangling Covid-19, Economic Mobility, and Containment Policy Shocks

Annika Camehl Malte Rieth

in: IWH Discussion Papers, No. 2, 2021

Abstract

We study the dynamic impact of Covid-19, economic mobility, and containment policy shocks. We use Bayesian panel structural vector autoregressions with daily data for 44 countries, identified through sign and zero restrictions. Incidence and mobility shocks raise cases and deaths significantly for two months. Restrictive policy shocks lower mobility immediately, cases after one week, and deaths after three weeks. Non-pharmaceutical interventions explain half of the variation in mobility, cases, and deaths worldwide. These flattened the pandemic curve, while deepening the global mobility recession. The policy tradeoff is 1 p.p. less mobility per day for 9% fewer deaths after two months.

read publication

cover_DP_2020-17.jpg

Is there an Information Channel of Monetary Policy?

Oliver Holtemöller Alexander Kriwoluzky Boreum Kwak

in: IWH Discussion Papers, No. 17, 2020

Abstract

Exploiting the heteroscedasticity of the changes in short-term and long-term interest rates and exchange rates around the FOMC announcement, we identify three structural monetary policy shocks. We eliminate the predictable part of the shocks and study their effects on financial variables and macro variables. The first shock resembles a conventional monetary policy shock, and the second resembles an unconventional monetary shock. The third shock leads to an increase in interest rates, stock prices, industrial production, consumer prices, and commodity prices. At the same time, the excess bond premium and uncertainty decrease, and the U.S. dollar depreciates. Therefore, this third shock combines all the characteristics of a central bank information shock.

read publication

Cover_DP_2020-4.jpg

Integrated Assessment of Epidemic and Economic Dynamics

Oliver Holtemöller

in: IWH Discussion Papers, No. 4, 2020

Abstract

In this paper, a simple integrated model for the joint assessment of epidemic and economic dynamics is developed. The model can be used to discuss mitigation policies like shutdown and testing. Since epidemics cause output losses due to a reduced labor force, temporarily reducing economic activity in order to prevent future losses can be welfare enhancing. Mitigation policies help to keep the number of people requiring intensive medical care below the capacity of the health system. The optimal policy is a mixture of temporary partial shutdown and intensive testing and isolation of infectious persons for an extended period of time.

read publication

cover_DP_2019-18.jpg

How Forecast Accuracy Depends on Conditioning Assumptions

Carola Engelke Katja Heinisch Christoph Schult

in: IWH Discussion Papers, No. 18, 2019

Abstract

This paper examines the extent to which errors in economic forecasts are driven by initial assumptions that prove to be incorrect ex post. Therefore, we construct a new data set comprising an unbalanced panel of annual forecasts from different institutions forecasting German GDP and the underlying assumptions. We explicitly control for different forecast horizons to proxy the information available at the release date. Over 75% of squared errors of the GDP forecast comove with the squared errors in their underlying assumptions. The root mean squared forecast error for GDP in our regression sample of 1.52% could be reduced to 1.13% by setting all assumption errors to zero. This implies that the accuracy of the assumptions is of great importance and that forecasters should reveal the framework of their assumptions in order to obtain useful policy recommendations based on economic forecasts.

read publication
Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoSupported by the BMWK